Skip to main content
Log in

Robust supervised classification of motor unit action potentials

  • Other Physiological Measurement and Modelling
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

A certainty-based classification algorithm is described, which comprises part of a clinically used EMG signal decomposition system. This algorithm classifies a candidate motor unit action potential (MUAP) to the motor unit action potential train (MUAPT) that produces the greatest estimated certainty, provided this maximal certainty is above a given threshold. The algorithm is iterative, such that the certainty with which assignments are made increases with each pass through the data, and it has specific stopping criteria. The performance and sensitivity (to the assignment threshold) of the Certainty algorithm and an iterative minimum Euclidean distance (MED) algorithm are compared by classifying sets of MUAPs detected in real concentric needle-detected EMG signals, using a range of assignment thresholds for each algorithm. With regard to MUAP assignment and error rates, the Certainty algorithm consistently provides better mean results and, more importantly, less variable results than the MED algorithm. The Certainty algorithm can provide mean assignment and error rates of 80.8 and 1.5%, respectively, with a maximum error rate of 3.2%; the MED algorithm can provide mean assignment and error rates of 80.3 and 3.3%, respectively, with a maximum error rate of 6.5%. The Certainty algorithm is relatively insensitive to the certainty threshold used, can consistently differentiate between similarly shaped MUAPs from different MUAPTs, and can make correct classifications despite biological shape variability, background noise and signal shape non-stationarity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Basmajian, J. V., andDeLuca, C. J. (1985): ‘Muscles alive (The Williams & Wilkins Co., Baltimore, USA)

    Google Scholar 

  • Barkhaus, P. E., andNandedkar, S. D. (1993): ‘Clinical evaluation of a decomposition algorithm for motor unit action potential analysis’,Muscle Nerve,16, p. 1085

    Google Scholar 

  • Bhatnagar, R. K., andKanal, L. N. (1985): ‘Handling uncertain information: a review of numeric and non-numerica methods’inL. N.Kanal, andLemmerJ. F. (Eds.) ‘Uncertainty in artificial intelligence’, (North-Holland, New York) pp. 3–26

    Google Scholar 

  • Bischoff, C., Stalberg, E. V., Falck, B., andEeg-Olofsson, K. E. (1994): ‘Reference values of motor unit action potentials obtained with multi-MUAP analysis’,Muscle Nerve,17, pp. 842–851

    Article  Google Scholar 

  • Broman, H. (1988): ‘Knowledge-based signal processing in the decomposition of myoelectric signals’,IEEE Eng. Med. Biol. Mag., pp. 24–28

  • Bunn, D. W. (1984): ‘Applied decision analysis’ (McGraw-Hill, New York)

    MATH  Google Scholar 

  • Conwit, R. A., Tracy, B., Jamison, C., McMugh, M., Stashuk, D. W., Brown, W. F., andMetter, E. J. (1997): ‘Decomposition-enhanced spike triggered averaging: contraction level effects’,Muscle Nerve,20, pp. 976–982

    Article  Google Scholar 

  • Doherty, T., Simmons, Z., O'Connell, B., Felice, K., Conwit, R., Ming Chan, K., Komori, T. Brown, T., Stashuk, D., andBrown, W. (1995): ‘Methods for estimating the numbers of motor units in human muscles’,J. Clin. Neurophysiol.,12, pp. 565–584

    Article  Google Scholar 

  • Etawil, H. A. Y., andStashuk, D. W. (1996): ‘Resolving super-imposed motor unit action potentials’,Med. Biol. Eng. Comput.,34, (1), pp. 33–40

    Google Scholar 

  • Etawil, H. A. Y. (1994): ‘Motor unit action potentials: discovering temporal relations of their trains and resolving their superpositions’. Master's Thesis, University of Waterloo

  • Gerber, A. S., andFigueredo, R. J. (1983): ‘MAP detection and ML estimation of signals overlapping in time and frequency for both Gaussian and Laplacian noise. Proc. IEEE ICASSP Conf., Boston, USA, pp. 603–606

  • Gerber, A. S., Studer, R. M., Figueredo, R. J., andMoshytz, G. S. (1984): ‘A new framework and computer program for quantitative EMG sigmal analysis’,IEEE Trans.,BME-31, pp. 857–863

    Google Scholar 

  • Golub, G. H., andVan Loan C. F. (1983): ‘Matrix computations’ (The Johns Hopkins University Press, Baltimore, Maryland, USA)

    MATH  Google Scholar 

  • Guiheneuc, P., Calanel, J., Doncarli, C., Gitton, D., andMichel, C. (1983): ‘Automatic detection and pattern recognition of single motor unit potentials in needle EMG’, inDesmedt, J. E. (Ed.): ‘Computer-aided electromyography’ (Progr. Clin. Neurophysiol., vol. 10) (Karger, Basel, Switzerland) pp. 73–127

    Google Scholar 

  • Haas, W. F., andMeyer, M. (1989): ‘An automated EMG decomposition system for routine clinical examination and clinical research, ARTMUP—automatic recognition and tracking of motor unit potentials’in:Desmedt, J. E., (Ed.): ‘Computeraided electromyography and expert systems’ (Clin. Neurophysiol. Updates, vol. 2) (Elsevier) pp. 67–81

  • Hassoun, M. H., Wang, C., andSpitzer, A. R. (1994): ‘NNERVE: neural network extraction of repetitive vectors for electromyography—Part I: algorithm’,IEEE Trans.,BME-41, (11), pp. 1039–1052

    Google Scholar 

  • Howard, J. E., McGill, K. C., andDorfman, L. J. (1988): ‘Properties of motor unit action potentials recorded with concentric and monopolar needle electrodes: ADEMG analysis’,Muscle Nerve,11, pp. 1051–1055

    Article  Google Scholar 

  • LeFever, R. S., andDeLuca, C. J. (1982): ‘Procedure for decomposing the myoelectric signal into its constituent action potentials—Part I: technique, theory and implementation’,IEEE Trans.,BME-29, (3), pp. 149–157

    Google Scholar 

  • Loudon, G. H., Jones, N. B., andSehmi, A. S. (1992): ‘New signal and processing techniques for the decomposition of EMG signals’,Med. Biol. Eng. Comput.,30, (6), pp. 591–599

    Article  Google Scholar 

  • Mambrito, B., andDeLuca, C. J. (1983): ‘Acquisition and decomposition of the EMG signal’inDesmedt, J. E. (Ed.): ‘Computeraided electromoygraphy’ (Progr. in Clin. Neurophysiol.), Vol. 10, (Karger, Basel, Switzerland) pp. 52–72

    Google Scholar 

  • McGill, K. (1984): ‘A method for quantitating the clinical electromyogram’ PhD Thesis, Stanford University, Stanford, California

    Google Scholar 

  • McGill, K., Cummins, K. L., andDorfman, L. J. (1985): ‘Automatic decomposition of the clinical electromyogram’,IEEE Trans.,BME-32, (7), pp. 470–477

    Google Scholar 

  • Nandedkar, S. D., andBarkhaus, P. E. (1993): ‘Motor unit action potential anlaysis using a decomposition algorithm’,Muscle Nerve,16, p. 1086

    Google Scholar 

  • Paoli, G. M. (1993): ‘Estimating certainty in classification of motor unit action potentials’. Master's Thesis, University of Waterloo

  • Paoli, G. M., andStashuk, D. W. (1993): ‘Supervised classification of motor unit action potentials based on estimates of classification certainty’. Proc. 15th Ann. IEEE Engineering in Medicine and Biology Society Conf., San Diego, California, pp. 1211–1212

  • Stalberg, E. V., Bischoff, C., andFalck, B. (1994): ‘Outliers a way to detect abnormality in quantitative EMG’,Muscle Nerve,17, pp. 392–399

    Article  Google Scholar 

  • Stalberg, E. V., andSonoo, M. (1994): ‘Assessment of variability in the shape of the motor unit action potential, the “jiggle” at consecutive discharges’,Muscle Nerve,17, pp. 1135–1144

    Article  Google Scholar 

  • Stashuk, D. W., andde Bruin, H. (1988): ‘Automatic decomposition of selective needle-detected myoelectric signals’,IEEE Trans.,BME-35, (1), pp. 1–10

    Google Scholar 

  • Stashuk, D. W., andNaphan, R. K. (1992): ‘Probabilistic inference-based classification applied to myoelectric signal decomposition’,IEEE Trans.,BME-39, (4), pp. 346–355

    Google Scholar 

  • Stashuk, D. W., andBrown, W. F. (1994): ‘Decomposition enhanced spike-triggered averaging: an improved method for estimating motor unit numbers in proximal muscles’,Muscle Nerve,17, p. 1098

    Article  Google Scholar 

  • Stashuk, D. W., andQu, Y. (1996a): ‘Adaptive motor unit action potential clustering using shape and temporal information’,Med. Biol. Eng. Comput.,34 (1), pp. 41–49

    Google Scholar 

  • Stashuk, D. W., andQu, Y. (1996b): ‘Robust method for estimating motor unit firing-pattern statistics’,Med. Biol. Eng. Comput. m34, (1), pp. 50–57

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stashuk, D., Paoli, G.M. Robust supervised classification of motor unit action potentials. Med. Biol. Eng. Comput. 36, 75–82 (1998). https://doi.org/10.1007/BF02522861

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02522861

Keywords

Navigation