Skip to main content
Log in

Phospholipid composition of neonatal guinea pig liver and plasma: Effect of postnatal food restriction

  • Articles
  • Published:
Lipids

Abstract

Preterm guinea pigs were delivered on day 65 of gestation (term=68 d) and were allowed either free or restricted access to food for the subsequent 48 h. Plasma phosphatidylcholine (PC) concentration increased postnatally from 190 (range 144–307) to 751 (426–1039) and 883 (758–977) μM for fed and starved pups, respectively. Plasma PC composition in both groups of pups was characterized by selective and equivalent relative increases to individual molecular species containing 18∶0 at thesn-1 position. Hepatic PC concentration increased from 6.75 (5.41–8.20) to 8.65 (6.54–10.63) and 9.23 (8.18–10.17) μmol/g for fed and starved pups, respectively, and, under all conditions, hepatic PC molecular composition closely mirrored that of plasma PC. These results support the hypothesis that the molecular species composition of plasma PC for the guinea pig in the immediate postnatal period is determined largely by the composition of the hepatic PC pool destined for lipoprotein secretion. Hepatic PC composition and concentration of the starved neonatal guinea pig were maintained independently of any dietary nutrient intake, at the expense of mobilization of extra hepatic lipid reserves. While this adaptive mechanism has inherent limited survival potential in neonatal starvation, it has implications for studies measuring plasma phospholipid fatty acid compositions as biochemical markers of dietary fat intake in preterm infants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EFA:

essential fatty acid

HPLC:

high-performance liquid chromatography

PC:

phosphatidylcholine

PE:

phosphatidylethanolamine

PUFA:

polyunsaturated fatty acid

TFE:

trifluoroethanol

References

  1. Innis, S.M. (1991) Essential Fatty Acids in Growth and Development,Prog. Lipid. Res. 30, 39–103.

    Article  PubMed  CAS  Google Scholar 

  2. Poisson, J.-P., Dupuy, J.P., Sarda, P., Descomps, B., Narce, M., Rieu, D., and de Paulet, A.C. (1993) Evidence That Liver Microsomes of Human Neonates Desaturate Essential Fatty Acids,Biochim. Biophys. Acta 1167, 109–113.

    PubMed  CAS  Google Scholar 

  3. Carlson, S.E., Cooke, R.J., Werkman S.H., and Tolley E.A. (1992) First Year Growth of Preterm Infants Fed Standard Compared to Marine Oil n-3 Supplemented Formula,Lipids 27, 901–907.

    PubMed  CAS  Google Scholar 

  4. Hoffman, D.R., and Uauy, R. (1992) Essentiality of Dietary ω3 Fatty Acids for Premature Infants: Plasma and Red Blood Cell Fatty Acid Composition,Lipids 27, 886–895.

    PubMed  CAS  Google Scholar 

  5. Clandinin, M.T., Garg, M.L., Parrott, A., van Aerde, J., Hervada, A., and Lein, E. (1992) Addition of Long-Chain Polyunsaturated Fatty Acids to Formula for Very Low Birth Weight Infants,Lipids 27, 896–900.

    PubMed  CAS  Google Scholar 

  6. Carlson, S.E., Wekman, S.H., Peeples, J.M., Cooke, R.J., and Tolley, E.A. (1993) Arachidonic Acid Status Correlates with First Year Growth in Preterm Infants,Proc. Natl. Acad. Sci. (USA) 90, 1073–1077.

    Article  CAS  Google Scholar 

  7. Vance, J.E., and Vance, D.E. (1986) Specific Pools of Phospholipids Are Used for Lipoprotein Secretion by Cultured Rat Hepatocytes,J. Biol. Chem. 261, 4486–4491.

    PubMed  CAS  Google Scholar 

  8. Yeagle, P.L. (1988) Lipid Regulation of Cell Membrane Structure and Function,FASEB J. 3, 1833–1842.

    Google Scholar 

  9. Burdge, G.C., Hunt, A.N. and Postle, A.D. (1994) Mechanisms of Hepatic Phosphatidylcholien Synthesis in Adult Rat: Effects of Pregnancy,Biochem. J. 303, 941–947.

    PubMed  CAS  Google Scholar 

  10. Burdge, G.C., Kelly, K.J., and Postle, A.D. (1993) Mechanisms of Hepatic Phosphatidylcholine Synthesis in the Developing Guinea Pig: Contributions of Acyl Remodelling and ofN-Methylation of Phosphatidylethanolamine,Biochem. J. 290, 67–73.

    PubMed  CAS  Google Scholar 

  11. Bøhmer, T., Havel, R.J., and Long, J.A. (1972) Physiological Fatty Liver and Hyperlipidemia in the Fetal Guinea-Pig: Chemical and Ultrastructural Characterization,J. Lipid Res. 13, 371–382.

    PubMed  Google Scholar 

  12. Weaver, L.T., and Lucas, A. (1987) Upper Intestinal Mucosal Proliferation in the Newborn Guinea Pig: Effect of Composition of Milk Feeds,Pediatr. Res. 22, 675–678.

    PubMed  CAS  Google Scholar 

  13. Stanley, C.A., Gonzales, E., and Baker, L. (1983) Development of Hepatic Fatty Acid Oxidation and Ketogenesis in the Newborn Guinea Pig,Pediatr. Res. 17, 224–229.

    PubMed  CAS  Google Scholar 

  14. Burdge, G.C., and Postle, A.D. (1994) Hepatic Phospholipid Molecular Species in the Guinea Pig: Adaptations to Pregnancy,Lipids 29, 259–264.

    PubMed  CAS  Google Scholar 

  15. Bligh, E.G., and Dyer, W.S. (1959) A Rapid Method for Total Lipid Extraction and Purification,Can. J. Biochem. 37, 911–923.

    Article  PubMed  CAS  Google Scholar 

  16. Burdge, G.C., and Postle, A.D. (1995) Effect of Maternal Ethanol Consumption During Pregnancy on the Phospholipid Molecular Species Composition of Fetal Guinea-Pig Brain, Liver and Plasma,Biochim. Biophys. Acta 1256, 346–352.

    PubMed  Google Scholar 

  17. Postle, A.D. (1987) A Method for the Sensitive Analysis of Individual Molecular Species of Phosphatidylcholine by High Performance Liquid Chromatography with Post-Column Fluorescence Detection,J. Chromatogr. 415, 41–51.

    Google Scholar 

  18. Burdge, G.C., and Postle, A.D. (1995) Phospholipid Molecular Species Composition of Developing Fetal Guinea Pig Brain,Lipids 30, 719–724.

    PubMed  CAS  Google Scholar 

  19. Keppler, D., and Decker, K. (1984) Glycogen, inBergmeyer: Methods of Enzymatic Analysis (Bergmyer, J., and Grassi, M., eds.) Vol. 6, pp. 11–18, Verlag Chemie, Weinheim.

    Google Scholar 

  20. Foote, K.D., MacKinnon, M.J., and Innis, S.M. (1991) Effect of Early Introduction of Formula vs. Fat-Free Parenteral Nutrition on Essential Fatty Acid Status of Preterm Infants,Am. J. Clin. Nutr. 54, 93–97.

    PubMed  CAS  Google Scholar 

  21. Postle, A.D., Al, M.D.M., Burdge, G.C., and Hornstra, G. (1995) The Composition of Individual Molecular Species of Plasma Phosphatidylcholine in Human Pregnancy,Early Human Devel. 43, 47–58.

    Article  CAS  Google Scholar 

  22. Lyman, R.L., Tinoco, J., Bouchard, P., Sheenan, G., Ostwald, R., and Miljanich, P. (1967) Sex Differences in the Metabolism of Phosphatidylcholines in Rat Liver,Biochim. Biophys. Acta 137, 107–114.

    PubMed  CAS  Google Scholar 

  23. Dauprat, P., Aurousseau, B., Bauchart, D., Dalle, M., and Delost, P. (1985) Influence of Psychosomatic Stress in Pregnant Guinea-Pigs on Fetal Lipid Metabolism,J. Devel. Physiol. 7, 339–345.

    CAS  Google Scholar 

  24. Foreman-van Drongelen, M.M.P.H., Houwelingen, A.C.V., Kester, A.D.M., de Jong, A.E.P., Blanco, C.E., Hasaart, T.H.M., and Hornstra, G. (1995) Long-Chain Polyene Status of Preterm Infants with Regard to the Plasma Fatty Acid Composition of Their Diet: Comparison Between Absolute and Relative Fatty Acid Levels in Plasma and Erythrocyte Phospholipids,Br. J. Nutr. 73, 405–422.

    Article  PubMed  CAS  Google Scholar 

  25. Neuringer, M., and Connor, W.E. (1986) n-3 Fatty Acids in the Brain and Retina; Evidence for Their Essentiality,Nutr. Rev. 44, 285–294.

    Article  PubMed  CAS  Google Scholar 

  26. Clandinin, M.T., Chappell, J.E., Leong, S., Heim, T., Swyer, P.R., and Chance, S.W. (1980) Intrauterine Fatty Acid Accretion Rates in Human Brain: Implications for Fatty Acid Requirements,Early Human Devel. 4, 121–129.

    Article  CAS  Google Scholar 

  27. Clandinin, M.T., Chappell, J.E., Leong, S., Heim, T., Swyer, P.R., and Chance, S.W. (1980) Extrauterine Fatty Acid Accretion Rates in Human Brain: Implications for Fatty Acid Requirements,Early Human Devel. 4, 131–138.

    Article  CAS  Google Scholar 

  28. Dobbing, J., and Sands, J. (1979) The Quantitative Growth and Development of Human Brain,Early Human Devel. 3, 79–138.

    Article  CAS  Google Scholar 

  29. Sinclair, A.J., and Crawford, M.A. (1972) The Accumulation of Arachidonate and Docosahexaenoate in the Developing Rat Brain,J. Neurochem. 19, 1753–1758.

    Article  PubMed  CAS  Google Scholar 

  30. Shires, S.E., Conway, S.P., Rawson, I., Dear, P.R.F., and Kelleher, J. (1986) Fatty Acid Composition of Plasma and Erythrocyte Phospholipids in Preterm Infants,Early Human Devel. 13, 53–63.

    Article  CAS  Google Scholar 

  31. Hunt, A.N., Bellhouse, A.F., Kelly, F. J., and Postle, A.D. (1991) Late Gestation Changes in Rat Tissue Phosphatidylcholine Composition,Biochem. Soc. Trans. 19, 111S.

    Google Scholar 

  32. Altman, J., and Das, G.D. (1967) Postnatal Neurogenesis in the Guinea-Pig,Nature 214, 1089–1101.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Hunt, A.N., Burdge, G.C. & Postle, A.D. Phospholipid composition of neonatal guinea pig liver and plasma: Effect of postnatal food restriction. Lipids 31, 489–495 (1996). https://doi.org/10.1007/BF02522642

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02522642

Keywords

Navigation