Skip to main content
Log in

Solute transfer across the sediment surface of a eutrophic lake: I. Porewater profiles from dialysis samplers

  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

Porewater profiles often are used to identify and quantify important biogeochemical processes occurring in lake sediments. In this study, multiple porewater profiles were obtained from two eutrophic Swiss lakes using porewater equilibrators (peepers) in order to examine spatial and seasonal trends in biogeochemical processes. Variability in profile shapes and concentrations was small on spatial scales of a few meters, but the uncertainty in calculated diffusive fluxes across the sediment surface was, on average, 35%. Focusing of Fe and Mn oxides toward the lake center resulted in systematic increases in porewater concentrations and diffusive fluxes of Fe2+ and Mn2+ with increasing water depth; these fluxes are postulated to be regulated by the pH-dependent dissolution of reduced-metal phases. Despite higher concentrations of inorganic carbon, NH +4 , Si and P in pelagic compared to littoral sites, diffusive fluxes of these substances across the sediment surface increased only slightly or not at all with increasing water depth. Porewater profiles did reveal temporal changes in Fe2+, Mn2+, Ca2+ and Mg2+ that were an indirect result of the large, seasonal changes in seston deposition, but no clear seasonal variations were found in diffusive fluxes of nutrients across the sediment surface. The intense mineralization occurring at the sediment surface was not reflected in the porewater profiles nor in the calculated diffusive fluxes. Calculated diffusive fluxes across the sediment surface resulted from decomposition occurring primarily in the top 5–7 cm of sediment. Diffusive fluxes from this subsurface mineralization were equal to the solute release from mineralization occurring at the sediment-water interface. Buried organic matter acts as a memory of previous lake conditons; it will require at least a decade before reductions in nutrient inputs to lakes fully reduce the diffusive fluxes into the lake from the buried reservoir of organic matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, D.D., 1991. Sediment pore water sampling. Chap. 7 in: A. Mudroch and S.D. MacKnight (eds.), CRC Handbook of Techniques for Aquatic Sediments Sampling, CRC Press, Boston, pp. 171–202.

    Google Scholar 

  • APHA (Amer. Public Health Assoc.), 1984. Standard Methods for the examination of water and wastewater, 16th ed. Amer. Public Health Assoc., Washington, D. C., 1193 pp.

    Google Scholar 

  • Baker, L.A., N.R. Urban, L.A. Sherman and P.L. Brezonik, 1989. Sulfur cycling in an experimentally acidified seepage lake. In: E. Saltzman and W. Cooper (eds.), Biogenic Sulfur. Amer. Chem. Soc., Washington, D. C., pp. 79–100.

    Google Scholar 

  • Baumann, P., 1988. Weitergehenede Gewässerschutzmassnahmen im Einzugsgebiet der luzernischen Mittellandseen im Bereich der Landwirtschaft. Gas Wasser Abwasser 68: 1–16.

    CAS  Google Scholar 

  • Berner, R.A., 1980. Early Diagenesis: A Theoretical Approach. Princeton Univ. Press, 241 pp.

  • Bloesch, J., 1982. Inshore-offshore sedimentation differences resulting from resuspension in the Eastern Basin of Lake Erie. Can. J. Fish. Aquat. Sci. 39: 748–759.

    Google Scholar 

  • Bloesch, J. and U. Uehlinger, 1986. Horizontal sedimentation differences in a eutrophic Swiss lake. Limnol. Oceanogr. 31: 1094–1109.

    CAS  Google Scholar 

  • Brandl, H. and K.W. Hanselmann, 1991. Evaluation and application of dialysis porewater samplers for microbiological studies at sediment-water interfaces. Aquatic Sci. 53: 55–73.

    Article  Google Scholar 

  • Canfield, D.E., B. Thamdrup and J.W. Hansen, 1993. The anaerobic degradation of organic matter in Danish coastal sediments: iron reduction manganese reduction, and sulfate reduction. Geochim. Cosmochim. Acta 57: 3867–3884.

    Article  PubMed  CAS  Google Scholar 

  • Carignan, R., 1984. Interstitial water sampling by dialysis: Methodological notes. Limnol. Oceanogr. 29: 667–670.

    CAS  Google Scholar 

  • Carignan, R. and D.R.S. Lean, 1991. Regeneration of dissolved substances in a seasonally anoxic lake: the relative importance of processes occurring in the water column and in the sediments. Limnol. Oceanogr. 36: 683–707.

    CAS  Google Scholar 

  • Carignan, R., S. St.-Pierre and R. Gächter, 1994. Use of diffusion samplers in oligotrophic lake sediments: Effects of free oxygen in sampler material. Limnol. Oceanogr. 39: 468–474.

    CAS  Google Scholar 

  • Cohen, Y., W.E. Drumbein and M. Shilo, 1977. Solar Lake (Sinai). 2. Distribution of photosynthetic microorganisms and primary production. Limnol. Oceanogr. 22: 609–620.

    CAS  Google Scholar 

  • Cook, R.B., 1984. Distributions of ferrous iron and sulfide in an hypolimnion. Can. J. Fish. Aquat. Sci. 41: 286–293.

    CAS  Google Scholar 

  • Cook, R.B., C.A. Kelley, J.G. Kingston and R.G. Kreis, 1987. Chemical limnology of soft water lakes in the Upper Midwest. Biogeochem. 4: 97–118.

    Article  CAS  Google Scholar 

  • Cook, R.B., C.A. Kelley, D.W. Schindler and M.A. Turner, 1986. Mechanisms of hydrogen ion neutralization in an experimentally actified lake. Limnol. Oceanogr. 31: 134–148.

    CAS  Google Scholar 

  • Davis, M.B., 1968. Pollen grains in lake sediments: Redeposition caused by seasonal water circulation. Science 162: 796–799.

    Article  PubMed  CAS  Google Scholar 

  • Davison, W., 1991. The solubility of iron sulphides in synthetic and natural waters at ambient temperature. Aquatic Sci. 53: 309–329.

    Article  Google Scholar 

  • Davison, W., G.W. Grime, J.A.W. Morgan and K. Clarke, 1991. Distribution of dissolved iron in sediment pore waters submultimillimetre resolution. Nature 352: 323–324.

    Article  CAS  Google Scholar 

  • Davison, W., S.I. Heaney, J.F. Talling and R. Rigg, 1980. Seasonal transformations and movements of iron in a productive English lake with deep-water anoxia. Schweiz. Z. Hydrol. 42: 196–224.

    Article  CAS  Google Scholar 

  • Davison, W., H. Zhang and G.W. Grime, 1994. Performance characteristics of gel probes used for measuring the chemistry of pore waters. Environ. Sci. Technol. 28: 1623–1632.

    Article  CAS  Google Scholar 

  • Davison, W. and H. Zhang, 1994. In situ speciation measurements of trace components in natural waters using thin-film gels. Nature 367: 546–548.

    Article  CAS  Google Scholar 

  • Devol, A., 1987. Deep Sea Res. 34: 1007–1026.

    Article  CAS  Google Scholar 

  • Emerson, S., 1976. Early diagenesis in anaerobic lake sediments: chemical equilibria in interstitial waters. Geochim. Cosmochim. Acta 40: 925–934.

    Article  CAS  Google Scholar 

  • Friedl, G., B. Wehrli and A. Manceau, 1997. The role of solids in the cycling of manganese in eutrophic lakes—new insights from EXAFS-spectroscopy. Limnol. Oceanogr., in prep.

  • Froehlich, P.N., G.P. Klinkhammer, M.L. Bender, N.A. Luedtke, G. Health, D. Cullen, et al., 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim. Cosmochim. Acta 43: 1075–1090.

    Article  Google Scholar 

  • Furrer, G. and B. Wehrli, 1993. Biogeochemical process at the sediment-water interface: measurements and modeling. Appl. Geochem. Suppl. 2: 117–119.

    Article  CAS  Google Scholar 

  • Gächter, R., D. Imboden, H. Bührer and P. Stadelmann, 1983. Mögliche Massnahmen zur Restaurierung des Sempachersees. Schweiz. Z. Hydrol. 45: 246–266.

    Google Scholar 

  • Gächter, R., A. Mares, E. Grieder, A. Zwyssig and P. Höhener, 1989. Auswirkungen der Belüftung und Sauerstoffbegasung auf den P-Haushalt des Sempachersees. Wasser, Energie, Luft 81: 335–341.

    Google Scholar 

  • Gächter, R. and J.S. Meyer, 1990. Mechanisms controlling fluxes of nutrients across the sediment/water interface in a eutrophic lake. In: R. Bands and J. Giesy (eds.), Fates and Effects of In-Place Pollutants in Aquatic Ecosystems. Lewis Publ., Ann Arbor, pp. 131–162.

    Google Scholar 

  • Gächter, R. and A. Wüest, 1993. Effects of artificial aeration on trophic status and hypolimnetic oxygen concentration in lakes. EAWAG News 34E: 25–30.

    Google Scholar 

  • Hesslein, R.H., 1976. An in-situ sampler for close interval pore water studies. Limnol. Oceanogr. 21: 912–914.

    CAS  Google Scholar 

  • Hilton, J. and M.M. Gibbs, 1984. The horizontal distribution of major elements and organic matter in the sediment of Esthwaite Water, England. Chem. Geology 47: 57–83.

    Article  CAS  Google Scholar 

  • Höhener, P., 1990. Der Stickstoffhaushalt von Seen, illustriert am Beispiel des Sempachersees. Ph. D. Diss., Swiss Federal Technical Institute, Zurich, 132 pp.

    Google Scholar 

  • Höhener, P. and R. Gächter, 1994. Nitrogen cycling across the sediment-water interface in an europhic, artificially oxygenated lake. Aquatic Sci. 56: 115–132.

    Article  Google Scholar 

  • Hupfer, M., R. Gächter and R. Giavanoli, 1995. Sorption and release of phosphorus on sedimenting particles. Aquatic Sci. 57: 305–324.

    Article  Google Scholar 

  • Johnson, K.S., W.M. Berelson, K.H. Coale, T.L. Coley, V.A. Elrod, W.R. Fairey, H. Iams, T.E. Kilgore and J.L. Nowicki, 1992. Manganese flux from continental margin sediments in a transect through the oxygen minimum. Science 257: 1242–1244.

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen, B.B. and N.P. Revsbech, 1983. Colorless sulfur bacteria, Beggiatoa spp. and Thiovulum spp., in oxygen and H2S microgradients. Appl. Environ. Microbiol. 45: 1261–1270.

    PubMed  CAS  Google Scholar 

  • Kelts, K. and K.J. Hsue, 1979. Freshwater carbonate sedimentation. In: Lerman, A (ed.), Lakes: Chemistry. Geology, Physics, Springer-Verlag, N.Y., pp. 295–324.

    Google Scholar 

  • Lasaga, A.C., 1979. The treatment of multi-component diffusion and ion pairs in diagenetic fluxes. Amer. J. Science 279: 324–346.

    Article  CAS  Google Scholar 

  • Lee, C., 1992. Controls on organic carbon preservation: The use of stratified water bodies to compare intrinsic rates of decomposition in oxic and anoxic system. Geochim. Cosmochim. Acta 56: 3323–3336.

    Article  CAS  Google Scholar 

  • Lehman, J.T., 1975. Reconstructing the rate of accumulation of lake sediment: the effect of sediment focusing. Quat. Res. 5: 541–550.

    Article  Google Scholar 

  • Lerman, A., 1979. Geochemical Processes: Water and Sediment Environments. John Wiley & Sons, New York, 481 pp.

    Google Scholar 

  • Lerman, A. and T.A. Liezke, 1977. Fluxes in a growing sediment layer. Am. J. Sci. 277: 25–37.

    Article  CAS  Google Scholar 

  • Li, Y.H. and S. Gregory, 1974. Diffusion of ions in sea water and in deep-sea sediment. Geochim. Cosmochim. Acta 38: 703–714.

    Article  CAS  Google Scholar 

  • Lovley, D.R. and S. Goodwin, 1988. Hydrogen concentrations as an indicator of the predominant terminal electron-accepting reactions in aquatic sediments. Geochim. Cosmochim. Acta 52: 2993–3003.

    Article  CAS  Google Scholar 

  • Lovley, D.R. and M.J. Klug, 1986. Model for the distribution of sulfate reduction and methanogenesis in freshwater sediments. Geochim. Cosmochim. Acta 50: 11–18.

    Article  CAS  Google Scholar 

  • Niessen, F. and M. Sturm, 1987. Die Sedimente des Baldeggersees (Schweiz)—Ablagerungsraum und Eutrophierungsentwicklung während der letzten 100 Jahre. Arch. Hydrobiol. 108: 365–383.

    Google Scholar 

  • Revsbech, N.P., B.B. Jorgensen and T.H. Blackburn, 1980. Oxygen in the sea bottom measured with a microelectrode. Science 207: 1355–1356.

    CAS  Google Scholar 

  • Revsbech, N.P., L.P. Nielsen, P.B. Christiansen and J. Sorensen, 1988. Combined oxygen and nitrous oxide microsensor for denitrification studies. Appl. Environ. Microbiol. 54: 2245–2249.

    PubMed  CAS  Google Scholar 

  • Rudd, J.W., C.A. Kelly, D.W. Schindler and M.A. Turner, 1990. A comparison of the acidification efficiencies of nitric and sulfuric acids by two whole-lake addition experiments. Limnol. Oceanogr. 35: 663–679.

    CAS  Google Scholar 

  • Rudd, J.W., C.A. Kelly, V.St. Louis, R.H. Hesslein A. Furutani and M.H. Holoka 1986. Microbial consumption of nitric and sulfuric acids in acidified north temperate lakes. Limnol. Oceanogr. 31: 1267–1280.

    Article  CAS  Google Scholar 

  • Sherman, L.A., P.L. Brezonik, L.A. Baker and E.P. Weir, 1994. Sediment porewater dynamics of little Rock Lake, Wisconsin: geochemical processes, and seasonal and spatial variability. Limnol. Oceanogr. 39: 1155–1171.

    CAS  Google Scholar 

  • Sinke, A.J.C., A.A. Cornelese, T.E. Cappenberg and A.B.B. Zehnder, 1992. Seasonal variation in sulfate reduction and methanogenesis in peaty sediments of eutrophic Lake Loosdrecht, the Netherlands. Biogeochemistry 15: 19–37.

    Google Scholar 

  • Stadelmann, P., 1984. Die Zustandsentwicklung des Baldeggersees (1900 bis 1980) und die Auswirkung von seeinternen Massnahmen. Wasser, Energie, Luft 76: 85–95.

    Google Scholar 

  • Stadelmann, P., 1988. Der Zustand des Sempachersees. Wasser, Energie, Luft 80: 81–96.

    Google Scholar 

  • Sweerts, J.P., M.J. Baer-Gilissen, A.A. Cornelese and T.E. Cappenberg, 1991. Oxygen-consuming processes at the profundal and littoral sediment-water interface of a small meso-eutrophic lake (Lake Vechten, the Netherlands). Limmnol. Oceanogr. 36: 1124–1133.

    CAS  Google Scholar 

  • Sweerts, J.P., D. De Beer, L.P. Nielsen, H. Verdouw, J.C. Van den Heuvel, Y. Cohen and T.E. Cappenberg, 1990. Denitrification by sulphur oxidizing Beggiatoa spp. mats on freshwater sediments. Nature 344: 762–763.

    Article  CAS  Google Scholar 

  • Sweerts, J.P., J.W. Rudd and C.A. Kelly, 1986. Metabolic activities in flocculent surface sediments and underlying sandy littoral sediments. Limnol. Oceanogr. 31: 330–338.

    CAS  Google Scholar 

  • Sweerts, J.P., V.St. Louis and T. Cappenberg, 1989. Oxygen concentration profiles and exchange in sediment cores with circulated overlying water. Freshwater Biol. 21: 401–409.

    Article  Google Scholar 

  • Thamdrup, B., R.N. Glud and J.W. Hansen, 1994. Manganese oxidation and in situ manganese fluxes from a coastal sediment. Geochim. Cosmochim. Acta 2563–2570.

  • Urban, N.R., 1994. Retention of sulfur in lakes. In: Baker, L.A. (ed.), Environmental Chemistry of Lakes and Reservoirs. Amer. Chem. Soc. Washington, D. C., pp. 323–369.

    Google Scholar 

  • Urban, N.R., P.L. Brezonik, L.A. Baker and L.A. Sherman, 1994. Sulfate reduction and diffusion in sediments of Little Rock Lake, Wisconsin. Limnol. Oceanogr. 39: 797–815.

    Article  CAS  Google Scholar 

  • Urban, N.R., R. Gächter and J. Bloesch, 1997. The significance of C:N ratios in particles in lakes, Limnol. Oceanogr., in review.

  • Walter, L.M. and E.A. Burton, 1990. Dissolutioin of recent platform carbonate sediments in marine pore fluids. Am. J. Sci. 290: 601–643.

    Article  Google Scholar 

  • Wehrli, B., G. Friedl and A. Manceau, 1995. Reaction rates and products of manganese oxidation at the sediment-water interface. In: C.P. Huang, C. O’Melia and J. Morgan (eds.), Aquatic Chemistry: Interfacial and Interspecies Processes. Amer. Chem. Soc., Washington, D.C., pp. 111–134.

    Google Scholar 

  • Wehrli, B., C. Dinkel, R. Gächter, P. Höhener and N. Urban, 1997. Solute transfer across the sediment surface of a eutrophic lake: Benthic chamber experiments. Aquatic Sci., in prep.

  • Wersin, P., P. Höhener, R. Giovanoli and W. Stumm, 1991. Early diagenetic influences on iron transformations in a freshwater lake sediment. Chemical Geol. 90: 233–252.

    Article  CAS  Google Scholar 

  • Wieland, E., P.H. Santschi, P. Höhener and M. Sturm, 1992. Scavenging of Chernobyl137Cs and natural210Pb in Lake Sempach, Switzerland. Geochim. Cosmochim. Acta 57: 2959–2979.

    Article  Google Scholar 

  • Wüest, A., B. Wehrli, G. Friedl and W. Stumm, 1991. Sanierung des Baldeggersees: Bericht über die Sauerstoff-und Phosphorentwicklung von 1982–1990 mit spezieller Analyse des Jahres 1990. EAWAG, Dübendorf, Switzerland, unpub. report, 83 pp., Auftrag 4818.

    Google Scholar 

  • Züllig, H., 1956. Sedimente als Ausdruck des Zustandes eines Gewässers. Schweiz. Z. Hydrol. 18: 5–143.

    Article  Google Scholar 

  • Züllig, H., 1982. Untersuchungen über die Stratigraphie von Carotinoiden im geschichteten Sediment von 10 Schweizer Seen zur Erkundung früherer Phytoplankton-Entfaltungen. Schweiz. Z. Hydrol. 44: 1–98.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urban, N.R., Dinkel, C. & Wehrli, B. Solute transfer across the sediment surface of a eutrophic lake: I. Porewater profiles from dialysis samplers. Aquatic Science 59, 1–25 (1997). https://doi.org/10.1007/BF02522546

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02522546

Key words

Navigation