Skip to main content
Log in

Is dietary docosahexaenoic acid essential for term infants?

  • Symposium on Dietary Fat and Neural Development
  • Published:
Lipids

Abstract

There is a need to determine whether there is a dietary requirement for docosahexaenoic acid (DHA, 22∶6ω3) by term infants to achieve their full developmental potential. Studies of brain fatty acid composition have demonstrated that infants who were breast fed have greater levels of cerebral cortex DHA than infants who were formula fed, suggesting that DHA in the cerebrum is dependent on a supply in the diet. Some physiological studies report that electrophysiological and behavioral assessments of visual function are improved in breast-fed infants relative to those fed formula, and that this is related to the level of DHA in their erythrocytes, whereas other studies demonstrate equivalent visual function between breast-and formula-fed infants. However, randomized studies of DHA supplementation of infant formula demonstrate that the visual function of formula-fed infants can be improved to breast-fed levels by adding DHA to formula. Further work is necessary to establish if there are long-term benefits of dietary DHA to the term infant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AA:

arachidonic acid

ALA:

α-linolenic acid

DHA:

docosahexaenoic acid

EFA:

esential fatty acid

LA:

Imoleic acid

LCPUFA:

long-chain polyunsaturated fatty acids

RDA:

recommended daily allowance

VEP:

visual evoked potential(s)

References

  1. Collins, F.D., Sinclair, A.J., Royle, J.P., Coats, D.A., Maynard, A.T., and Leonard, R.F. (1971) Plasma Lipids in Human Linoleic Acid Deficiency,Nutr. Metab. 13, 150–167.

    Article  PubMed  CAS  Google Scholar 

  2. Paulsrud, J.R., Pensler, L., Whitten, C.F., Stewart, S., and Holman, R.T. (1972) Essential Fatty Acid Deficiency in Infants Induced by Fat-Free Intravenous Feeding,Am. J. Clin. Nutr. 25, 897–904.

    PubMed  CAS  Google Scholar 

  3. Hansen, A.E., Wiese, H.F., Boelsche, A.N., Haggard, M.E., Adam, D.J.D., and Davis, H. (1963) Role of Linoleic Acid in Infant Nutrition: Clinical and Chemical Study of 428 Infants Fed on Milk Mixtures Varying in Kind and Amount of Fat,Pediatrics 31, 171–192.

    Google Scholar 

  4. Cuthbertson, W.F.J. (1976) Essential Fatty Acid Requirements in Infancy,Am. J. Clin. Nutr. 29, 559–568.

    PubMed  CAS  Google Scholar 

  5. Fiennes, R.N., Sinclair, A.J., and Crawford, M.A. (1973) Essential Fatty Acid Studies in Primates Linolenic Acid Requirements of Capuchins,J. Med. Primatol., 2, 155–169.

    PubMed  CAS  Google Scholar 

  6. Neuringer, M., Connor, W.E., Van Petten, C., and Barstad, L. (1984) Dietary Omega-3 Fatty Acid Deficiency and Visual Loss in Infant Rhesus Monkeys,J. Clin. Invest. 73, 272–276.

    Article  PubMed  CAS  Google Scholar 

  7. Holman, R.T., Johnson, S.B., and Hatch, T.F. (1982) A Case of Human Linolenic Acid Deficiency Involving Neurological Abnormalities,Am. J. Clin. Nutr. 35, 617–623.

    PubMed  CAS  Google Scholar 

  8. Stein, T.P., Marino, P.L., Harner, R.N., Schluter, M.D., Leskiw, M.J., and Black, S. (1983) Linoleate and Possibly Linolenate Deficiency in a Patient on Long-Term Intravenous Nutrition at Home,J. Am. Coll. Nutr. 2, 241–247.

    PubMed  CAS  Google Scholar 

  9. Bjerve, K.S., Mostad, I.L., and Thoresen, L. (1987) Alpha-Linolenic Acid Deficiency in Patients on Long-Term Gastric-Tube Feeding: Estimation of Linolenic Acid and Long-Chain Unsaturated n-3 Fatty Acid Requirement in Man,Am. J. Clin. Nutr. 45, 66–77.

    PubMed  CAS  Google Scholar 

  10. Clandinin, M.T., Chappell, J.E., Heim, T., Swyer, P.R., and Chance, G.W. (1981) Fatty Acid Accretion in Fetal and Neonatal Liver: Implications for Fatty Acid Requirements,Early Hum. Dev. 5, 7–14.

    Article  PubMed  CAS  Google Scholar 

  11. Clandinin, M.T., Chappel, J.E., Heim, T., Swyer, P.R., and Chance, G.W. (1981) Fatty Acid Accretion in the Development of Human Spinal Cord,Early Hum. Dev. 5, 1–6.

    Article  PubMed  CAS  Google Scholar 

  12. Clandinin, M.T., Chappell, J.E., Leong, S., Heim, T., Swyer, P.R., and Chance, G.W. (1980) Intrauterine Fatty Acid Accretion Rates in Human Brain: Implications for Fatty Acid Requirements,Early Hum. Dev. 4, 121–129.

    Article  PubMed  CAS  Google Scholar 

  13. Clandinin, M.T., Chappell, J.E., Leong, S., Heim, T., Swyer, P.R., and Chance, G.W. (1980) Extrauterine Fatty Acid Accretion in Infant Brain: Implications for Fatty Acid Requirements,Early Hum. Dev. 4, 131–138.

    Article  PubMed  CAS  Google Scholar 

  14. Clandinin, M.T., Cheema, S., Field, C.J., Garg, M.L., Venkatraman, J., and Clandinin, T.R. (1991) Dietary Fat: Exogenous Determination of Membrane Structure and Cell Function,FASEB J. 5, 2761–2769.

    PubMed  CAS  Google Scholar 

  15. Neuringer, M., Connor, W.E., Lin, D.S., Barstad, L., and Luck, S. (1986) Biochemical and Functional Effects of Prenatal and Postnatal Omega-3 Fatty Acid Deficiency on Retina and Brain in Rhesus Monkeys,Proc. Natl. Acad. Sci. USA 83, 4021–4025.

    Article  PubMed  CAS  Google Scholar 

  16. ESPGAN Committee on Nutrition (1991) Comment on the Content and Composition of Lipids in Infant Formulas,Acta Paediatr. Scand. 80, 887–896.

    Google Scholar 

  17. Scientific Review Committee (1990) Lipids: Function and Composition, inNutrition Recommendations: The Report of the Scientific Review Committee, pp. 40–52, Minister of National Health and Welfare, Ottawa.

    Google Scholar 

  18. Makrides, M., Simmer, K., Goggin, M., and Gibson, R.A. (1993) Erythrocyte Docosahexaenoic Acid Correlates with the Visual Response of Healthy, Term Infants,Pediatr. Res. 33, 425–427.

    Article  PubMed  CAS  Google Scholar 

  19. Birch, E., Birch, D., Hoffman, D., Hale, L., Everett, M., and Uauy, R. (1993) Breast-Feeding and Optimal Visual Development,J. Pediatr. Ophthalmol. Strabismus 30, 33–38.

    PubMed  CAS  Google Scholar 

  20. Jorgensen, M.H., Jonsbo, F., Holmer, G., Hernell, O., and Michaelsen, K.F. (1994) Breast-Fed (BF) Term Infants Have a Better Visual Acuity Than Formula Fed (FF) Infants at the Age of 2 and 4 Months,FASEB J. 8, 460 (Abstract).

    Google Scholar 

  21. Innis, S.M., Nelson, C.M., Rioux, M.F., and King, D.J. (1994) Development of Visual Acuity in Relation to Plasma and Erythrocyte Omega-6 and Omega-3 Fatty Acids in Healthy Term Gestation Infants,Am. J. Clin. Nutr. 60, 347–352.

    PubMed  CAS  Google Scholar 

  22. Farquharson, J., Jamieson, E.C., Abbasi, K.A., Patrick, W.J.A., Logan, R.W., and Cockburn, F. (1995) Effect of Diet on the Fatty Acid Composition of the Major Phospholipids of Infant Cerebral Cortex,Arch. Dis. Child. 72, 198–203.

    PubMed  CAS  Google Scholar 

  23. Gibson, R.A., McMurchie, E.J., Charnock, J.S., and Kneebone, G.M. (1984) Homeostatic Control of Membrane Fatty Acid Composition in the Rat After Dietary Lipid Treatment,Lipids 19, 942–951.

    PubMed  CAS  Google Scholar 

  24. Anderson, G.J. (1994) Developmental Sensitivity of the Brain to Dietary n-3 Fatty Acids,J. Lipid Res. 35, 105–111.

    PubMed  CAS  Google Scholar 

  25. Farquharson, J., Cockburn, F., Patrick, W.A., Jamieson, E.C., and Logan, R.W. (1992) Infant Cerebral Cortex Phospholipid Fatty-Acid Composition and Diet,Lancet 340, 810–813.

    Article  PubMed  CAS  Google Scholar 

  26. Makrides, M., Neumann, M.A., Byard, R.W., Simmer, K., and Gibson, R.A. (1994) Fatty Acid Composition of Brain, Retina, and Erythrocytes in Breast- and Formula-Fed Infants,Am. J. Clin. Nutr. 60, 189–194.

    PubMed  CAS  Google Scholar 

  27. Dobson, V., and Teller, D.Y. (1978) Visual Acuity in Human Infants: A Review and Comparison of Behavioral and Electrophysiological Studies,Vision Res. 18, 1469–1483.

    Article  PubMed  CAS  Google Scholar 

  28. Lamkin, J.C. (1992) Can This Baby See?: Estimation of Visual Acuity in the Preverbal Child,Int. Ophthalmol. Clin. 32, 1–23.

    Article  PubMed  CAS  Google Scholar 

  29. Makrides, M., Neumann, M., Simmer, K., Pater, J., and Gibson, R. (1995) Are Long-chain Polyunsaturated Fatty Acids Essential Nutrients in Infancy?Lancet 345, 1463–1468.

    Article  PubMed  CAS  Google Scholar 

  30. Carlson, S.E., Ford, A.J. Werkman, S.H., Peeples, J.M., and Koo, W.W.K. (1996) Visual Acuity and Fatty Acid Status of Term Infants Fed Human Milk and Formulas with and without Docosahexaenoate and Arachidonate from Egg Yolk Lecithin,Pediatr. Res. in press.

  31. Agostoni, C., Trojan, S., Bellù, R., Riva, E., and Giovannini, M. (1995) Neurodevelopmental Quotient of Healthy Term Infants at 4 Months and Feeding Practice: The Role of Long-Chain Polyunsaturated Fatty Acids,Pediatr. Res. 38, 262–266.

    PubMed  CAS  Google Scholar 

  32. Auestad, N., Montalto, M.B., Wheeler, R.E., Fitzgerald, K.R., Hall, R.T., Neuringer, M., Connor, W.E., Hartmann E.E., and Taylor, J.A. (1995) Visual Acuity, RBC Fatty Acids and Growth in Term Infants Fed Formulas with and without Long Chain Polyunsaturated Fatty Acids (LCP),Pediatr. Res. 37, 302A, (Abstract).

    Google Scholar 

  33. Janowsky, J.S., Scott, D.T., Wheeler, R.E., and Auestad, N. (1995) Fatty Acids Affect Early Language Development.Pediatr. Res. 37, 310A (Abstract).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Based on a presentation at the AOCS Annual Meeting & Expo in San Antonio, Texas, May 7–11, 1995.

About this article

Cite this article

Makrides, M., Neumann, M.A. & Gibson, R.A. Is dietary docosahexaenoic acid essential for term infants?. Lipids 31, 115–119 (1996). https://doi.org/10.1007/BF02522420

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02522420

Keywords

Navigation