Skip to main content
Log in

Implementation and application of real-time motion analysis based on passive markers

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

A method for real-time motion analysis based on passive markers is presented. An opto-electronic automatic motion analyser was used as hardware platform and the real-time operation was based on the interfacing between two levels of the system architecture. True real-time acquisition, processing and representation of two-dimensional and three-dimensional kinematics data were implemented through a newly conceived data acquisition procedure and high speed optimisation of the kinematics data processing. The method allows one to operate the motion analysis system in real-time; even when the data elaboration unit is required to perform other processing functions, the only consequence is a decrease in system sampling rate. The maximum number of processed and ploted markers in three dimensions at the highest system sampling rate (100 Hz) turned out to be suitable for the implementation of analytical and visual kinematics biofeedback. An example of the achievable level of complexity in terms of marker disposition model and graphic representation is reported by describing a demonstration of the real-time representation of human face movements. A clinical application of the method for patient position definition and control at radiotherapy units is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Aziz, Y. I., andKarara, H. M. (1971): ‘Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry’,Amer. Soc. Photogrammetry, Conf. Proc. Falls Church, VA, pp. 1–18

  • Adams, L. P., andRüther, H. (1989): ‘A stereophotogrammetric system using multiple digital cameras for the accurate placement of a proton beam’,in Kahmen, H., andGruen, A., (Eds.): ‘Optical three-dimensional measurement techniques’ (Wiechman, Karlsruhe)

    Google Scholar 

  • Baroni, G., andFerrigno, G. (1996): ‘Real-time motion analysis for definition and control of patient position in radiotherapy’,in Hoffman, E. A. (Ed.): ‘Physiology and function of multidimensional images’,Proc. SPIE,2709, pp. 506–515

  • Baroni, G., Ferrigno, G., andPedotti, A. (1996): ‘Opto-electronic techniques for patient repositioning in radiotherapy,’Technol. Health Care,3(4), pp. 251–262

    Google Scholar 

  • Baroni, G., Torretta, F., Ferrigno, G., Orecchia, R., Pedotti, A., Scannicchio, D., andTosi, G. (1997): ‘Close-range photo-grammetry for definition and control of patient position in radio-therapy,’Med. Biol. Eng. Comput.,35 Supplement part 2, pp. 1065

    Google Scholar 

  • Borghese, N. A., andFerrigno, G. (1990): ‘An algorithm for 3-D automatic movement detection by means of standard TVC cameras’,IEEE Trans. Biomed. Eng.,BME-37, pp. 1221–1225

    Article  Google Scholar 

  • Borghese, N. A., Cerveri, P., andFerrigno, G. (1997): ‘Statistical comparison of DLT versus ILSSC in the calibration of photogrammetric stereo-systems,’J. Biomech.,30(4), pp. 409–413

    Article  Google Scholar 

  • Cosi, P., Dugatto, M., Ferrero, F., Magno Caldonetto, E., andVagges, K. (1995): ‘Bimodal recognition of italian plosives’, inProceedings of 13th International Congress of Phonetic Sciences, Stockolm, August, Vol. 4, pp. 260–263

  • Faugeras, O. D. (1995): ‘Stratification of three-dimensional vision: projective, affine, and metric representations,’J. Opt. Soc. Am. A,12(3), pp. 465–484

    Article  Google Scholar 

  • Ferrigno, G., andPedotti, A. (1985): ‘ELITE: a digital dedicated hardware system for movement analysis via TV signal processing’,IEEE Trans. Biomed. Eng.,BME-32, pp. 943–950

    Google Scholar 

  • Ferrigno, G., andGussoni, M. (1988): ‘Procedure to automatically classify markers in biomechanical analysis of whole body movement in different sport activities,’Med. Biol. Eng. Comput.,26, pp. 321–324

    Article  Google Scholar 

  • Ferrigno, G., Borghese, N. A., andPedotti, A. (1990): ‘Pattern recognition in 3-D automatic human motion analysis,’ISPRS J. Photogrammetry. Remote Sensing,45, pp. 227–246

    Article  Google Scholar 

  • Furnèe, E. H. (1990): ‘PRIMAS: real-time image-based motion measurement system’,in Walton, J. S. (Ed.), ‘Image-based motion measurement’Proc. SPIE,1356, pp. 56–62

  • Glasgow, G. P., andPurdy, J. A. (1992): ‘External beam dosimetry and treatment planning’,in Perez, C. A., andBrady, L. W. (Eds.): ‘Principle and practise of radiation oncology’ (J. B. Lippincot, Philadelphia)

    Google Scholar 

  • Hartley, R. I. (1994): ‘Projective reconstruction and invariants from multiple images,’IEEE Trans. Patt. Anal. Machine Intell.,16(10), pp. 1036–1041

    Article  Google Scholar 

  • Hartley, R. I. (1997): ‘Self-calibration of stationary cameras,’Int. J. Comput. Vision,22(1), pp. 5–23

    Article  Google Scholar 

  • Herman, M. G., Abrams, R. A., andMayer, R. R. (1994): ‘Clinical use of portal imaging for daily patient treatment verification,’Int. J. Radiat. Oncol. Biol. Phys.,28, pp. 1017–1023

    Google Scholar 

  • Jarret, M. O., Andrew, B. J., andPaul, J. P. (1976): ‘A television computer system for the analysis of human locomotion,’Proc. IERE Conference,34, pp. 357–370

    Google Scholar 

  • Leo, T. andMacellari, V. (1980): ‘An optoelectronic device microcomputer system for automatic gait analysis’.Proc. IFIP-IMIA Working Conference on ‘Changes in Health Care Instrumentation due to Microprocessor Technology’ (North Holland)

  • Levin, C. V., Hought, J., Adams, L. P., Boonzaier, D., Rüther, H., andWynchank, S. (1993): ‘Determining locations of intracerebral lesions for proton radiotherapy,’Phys. Med. Biol.,38, pp. 1393–1401

    Article  Google Scholar 

  • Longuet-Higgins, H. C. (1981): ‘A computer algorithm for reconstructing a scene from two projections,’Nature,293, pp. 133–135

    Article  Google Scholar 

  • Munro, P. (1995): ‘Portal imaging technology: past, present and future,’Semin. Radiol. Oncol.,5, pp. 115–133

    Article  Google Scholar 

  • Pedotti, A., andFerrigno, G. (1995): ‘Opto-electronic based system’,in Allard, P., Stokes, I. A. F., andBlanchi, J. P. (Eds.): ‘Three dimensional analysis of human movement’ (Human Kinetics, Champaign, IL) pp. 57–78

    Google Scholar 

  • Press, W. H., Teulosky, S. A., Vetterling, V. T., andFlannery, B. P. (1992): ‘Numerical recipes in C’, 2nd edn (Cambrige University Press)

  • Rabinowitz, I., Broomberg, J., andGoitein, M. (1989): ‘Accuracy of radiation field alignment in clinical practise,’Int. J. Radiat. Oncol. Biol. Phys.,19, pp. 149–153

    Google Scholar 

  • Taylor, K. D., Mottier, F. M., Simmons, D. W., Cohen, W., Pavlak, R., Cornell, D. P., andHankins, G. B. (1982): ‘An automated motion measurement system for clinical gait analysis’,J. Biomech.,15, pp. 505–516

    Article  Google Scholar 

  • Tsai, R. Y. (1987): ‘A versatile camera calibration technique TV cameras and lenses,’IEEE J. Robotics Automation, 3(4), pp. 320–327

    Google Scholar 

  • Tsai, R. Y., andLenz, R. K. (1989): ‘A new technique for fully autonomous and efficient 3D robotics hand/eye calibration,’IEEE J. Robotics Automation,5(3), pp. 345–358

    Article  Google Scholar 

  • Verhey, L. J., Goitein, M., andMcNully, P. (1982): ‘Precise positioning of patient for radiation therapy,’Int. J. Radiat. Oncol. Biol. Phys.,8, pp. 289–294

    Google Scholar 

  • Weng, J., Huang, T. S., andAhuja, N. (1989): ‘Motion and structure from two perspective views: algorithms, error analysis and error estimation,’IEEE Trans. Patt. Anal. Machine Intell.,11(11), pp. 451–476

    Article  Google Scholar 

  • Weng, J., Cohen, P., andHenriou, M. (1992): ‘Camera calibration with distortion models and accuracy evaluation,’IEEE Trans. Patt. Anal. Machine Intell.,14(10), pp. 965–979

    Article  Google Scholar 

  • White, J. E., Chen, T., andMcCracken, J. (1982): ‘The influence of radiation therapy quality control on survival, response and sites of relapse in oat cell carcinoma of the lung,’Cancer,50, pp. 1084–1090

    Article  Google Scholar 

  • Woltring, H. J. (1974): ‘New possibilities for human motion studies by a real time light spot position measurement,’Biotelemetry,1, pp. 132–146

    Google Scholar 

  • Woltring, H. J., andMarsolais, E. B. (1980): ‘Optoelectronic (SELSPOT) gait measurement in two and three dimensional space. A preliminary report,’Bull. Prosth.,17, pp. 46–52

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Baroni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baroni, G., Ferrigno, G. & Pedotti, A. Implementation and application of real-time motion analysis based on passive markers. Med. Biol. Eng. Comput. 36, 693–703 (1998). https://doi.org/10.1007/BF02518871

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02518871

Keywords

Navigation