Skip to main content
Log in

Calpain as one of the calcium signal mediators in the cell

  • Reviews
  • Published:
Neurophysiology Aims and scope

Abstract

This review gathers together the available information on the structural and functional properties of an intracellular calcium-dependent protease, calpain, and its inhibitors and activators. Changes in the ideas about the mechanism of enzyme activation, its interaction with substrate, and regulation of functions are considered in light of recently obtained information. The multi-faceted participation of calpain in the realization of one of the most important physiological function connected with calcium signalization is demonstrated with concrete example (in particular, in the case of a memory model, based on long-term synaptic potentiation).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. G. Kostyuk,Calcium and Cellular Excitability, [in Russian], Nauka, Moscow (1986).

    Google Scholar 

  2. T. V. Bliss and G. L. Collingridge, “A synaptic model of memory: long-term potentiation in the hippocampus,”Nature,361, No. 6407, 31–39 (1993).

    Article  PubMed  CAS  Google Scholar 

  3. G. Guroff, “A neutral calcium-activated proteinase from the soluble fraction of rat brain,”J. Biol. Chem.,239, No. 1, 149–155 (1964).

    PubMed  CAS  Google Scholar 

  4. R. B. Huston and E. G. Krebs, “Activation of skeletal muscle phosphorylase kinase by Ca2+. II. Identification of the kinase activating factor as a proteolytic enzyme,”Biochemistry,7, No. 6, 2116–2122 (1968).

    Article  PubMed  CAS  Google Scholar 

  5. W. R. Dayton, D. E. Goll, M. G. Zeece, et al., “A Ca2+-activated protease possibly involved in myofibrillar protein turnover. Purification from porcine muscle,”Biochemistry,15, No. 10, 2150–2158 (1976).

    Article  PubMed  CAS  Google Scholar 

  6. W. R. Dayton, W. J. Reville, D. E. Goll, and M. H. Stromer, “A Ca2+-activated protease possibly involved in myofibrillar protein turnover. Partial characterization of the purified enzyme,”Biochemistry,15, No. 10, 2159–2167 (1976).

    Article  PubMed  CAS  Google Scholar 

  7. H. Sugita, Sh. Ishiura, K. Kamakura, et al., “Ca-activated neural protease in physiological and pathological conditions,” in:Calcium Regulation in Biological Systems, Takeda Sci. Found., Tokyo (1984), pp. 243–256.

    Google Scholar 

  8. D. E. Goll, T. Edmunds, W. C. Kleese, et al., “Some properties of the Ca2+-dependent proteinase,”Prog. Clin. Biol. Res.,180, 151–164 (1985).

    PubMed  CAS  Google Scholar 

  9. S. Pontremoli and E. Melloni, “Extralysosomal protein degradation,”Annu. Rev. Biochem.,55, 455–481 (1986).

    Article  PubMed  CAS  Google Scholar 

  10. K. Suzuki, S. Imajoh, Y. Emori, et al., “Calcium-activated neutral protease and its endogenous inhibitor. Activation at the cell membrane and biological function,”FEBS Lett.,220, No. 2, 271–277 (1987).

    Article  PubMed  CAS  Google Scholar 

  11. T. Sasaki, T. Kikuchi, N. Yumoto, et al., “Comparative specificity and kinetic studies on porcine calpain I and calpain II with naturally occurring peptides and synthetic fluorogenic substrates,”J. Biol. Chem.,259, No. 20, 12489–12494 (1984).

    PubMed  CAS  Google Scholar 

  12. S. Ohno, Y. Emori, S. Imajoh, et al., “Evolutionary origin of a calcium-dependent protease by fusion of genes for a thiol protease and a calcium-binding protein?,”Nature,312, No. 5994, 566–570 (1984).

    Article  PubMed  CAS  Google Scholar 

  13. Y. Emori, H. Kawasaki, H. Sugihara, et al., “Isolation and sequence analyses of cDNA clones for the large subunits of two isozymes of rabbit calcium-dependent protease,”J. Biol. Chem.,261, No. 20, 9465–9471 (1986).

    PubMed  CAS  Google Scholar 

  14. Y. Emori, H. Kawasaki, S. Imajoh, et al., “Isolation and sequence analyses of cDNA clones for the small subunit of rabbit calcium-dependent protease,”J. Biol. Chem.,261, No. 20, 9472–9476 (1986).

    PubMed  CAS  Google Scholar 

  15. Y. Emori, S. Ohno, M. Tobita, and K. Suzuki, “Gene structure of calcium-dependent protease retains the ancestral organization of the calcium-binding protein gene,”FEBS Lett.,194, No. 2, 249–252 (1986).

    Article  PubMed  CAS  Google Scholar 

  16. T. Murachi, K. Tanaka, M. Hatanaka, and T. Murakami, “Intracellular Ca2+-dependent protease (calpain) and its highmolecular-weight endogenous inhibitor (calpastatin),”Adv. Enzyme Regulat.,19, 407–424 (1980).

    Article  CAS  Google Scholar 

  17. E. Melloni, F. Salamino, and B. Sparatore, “The calpain-calpastatin system in mammalian cells: properties and possible functions,”Biochimie,74, No. 3, 217–223 (1992).

    Article  PubMed  CAS  Google Scholar 

  18. M. Molinari, M. Maki, and E. Carafoli, “Purification of μ-calpain by a novel affinity chromatography approach. New insights into the mechanism of the interaction of the protease with targets,”J. Biol. Chem.,270, No. 24, 14576–14581 (1995).

    PubMed  CAS  Google Scholar 

  19. U. J. Zimmerman, and W. W. Schlaepfer, “Calcium-activated neutral proteases (calpains) are carbohydrate binding proteins,”J. Biol. Chem.,263, No. 24, 11609–11612 (1988).

    PubMed  CAS  Google Scholar 

  20. C. Crawford, N. R. Brown, and A. C. Willis, ”Studies of the active site of m-calpain and the interaction with calpastatin,”Biochem. J.,296, Part 1, 135–142 (1993).

    PubMed  CAS  Google Scholar 

  21. T. C. Saido, M. Shibata, T. Takenawa, et al., “Positive regulation of μ-calpain action by polyphosphoinositides,”J. Biol. Chem.,267, No. 34, 24585–24590 (1992).

    PubMed  CAS  Google Scholar 

  22. K Chakrabarti, S. Dasgupta, R. H. Gadsden, Sr., et al., “Regulation of brain m-calpain Ca2+ sensitivity by mixtures of membrane lipids: activation at intracellular Ca2+ level,”J. Neurosci. Res.,44, No. 4, 374–380 (1996).

    Article  PubMed  CAS  Google Scholar 

  23. T. Edmunds, P. A. Nagainis, S. K. Sathe, et al., “Comparison of the autolyzed and unautolyzed forms of μ-and m-calpain from bovine skeletal muscle,”Biochim. Biophys. Acta,1077, No. 2, 197–208 (1991).

    PubMed  CAS  Google Scholar 

  24. N. Brown and C. Crawford, “Structural modifications associated with the change in Ca2+ sensitivity on activation of m-calpain,”FEBS Lett.,322, No. 1, 65–68 (1993).

    Article  PubMed  CAS  Google Scholar 

  25. T. C. Saido, H. Suzuki, H. Yamazaki, et al., “In situ capture of μ-calpain activation in platelets,”J. Biol. Chem.,268, No. 10, 7422–7426 (1993).

    PubMed  CAS  Google Scholar 

  26. T. C. Saido, S. Nagao, M. Shiramine, et al., “Distinct kinetics of subunit autolysis in mammalian m-calpain activation,”FEBS Lett.,346, Nos. 2/3, 263–267 (1994).

    Article  PubMed  CAS  Google Scholar 

  27. M. Molinari, J. Anagli, and E. Carafoli, “Ca(2+)-activated neutral protease is active in the erythrocyte membrane in its nonautolyzed 80-kDa form,”J. Biol. Chem.,269, No. 45, 27992–27995 (1994).

    PubMed  CAS  Google Scholar 

  28. J. S. Elce, C. Hegadorn, and J. S. C. Arthur, “Autolysis, Ca2+ requirement, and heterodimer stability in m-calpain,”J. Biol. Chem.,272, No. 17, 11268–11275 (1997)

    PubMed  CAS  Google Scholar 

  29. R. P. Guttmann, J. S. Elce, P. D. Bell, et al., “Oxidation inhibits substrate proteolysis by calpain I but not autolysis,”J. Biol. Chem.,272, No. 3, 2005–2012 (1997)

    PubMed  CAS  Google Scholar 

  30. P. Tompa, A. Baki, E. Schad, and P. Fiedrich, “The calpain cascade. μ-Calpain activates m-calpain,”J. Biol. Chem.,271, No. 2, 33161–33164 (1996).

    PubMed  CAS  Google Scholar 

  31. T. Yoshizawa, H. Sorimachi, S. Tomioka, et al., “Calpain dissociates into subunits in the presence of calcium ions,”Biochem. Biophys. Res. Commun.,208, No. 1, 376–383 (1995).

    Article  PubMed  CAS  Google Scholar 

  32. W. Zhang and R. L. Mellgren, “Calpain subunits remain associated during catalysis,”Biochem. Biophys. Res. Commun.,227, No. 3, 891–896 (1996).

    PubMed  CAS  Google Scholar 

  33. E. Takano, A. Kitahara, T. Sasaki, et al., “Two different molecular species of pig calpastatin. Structural and functional relationship between 107 kDa and 68 molecules,”Biochem. J.,235, No. 1, 97–102 (1986).

    PubMed  CAS  Google Scholar 

  34. Y. Adachi, A. Ishida-Takahashi, C. Takahashi, et al., “Phosphorylation and subcellular distribution of calpastatin in human hematopoietic system cells,”J. Biol. Chem.,266, No. 6, 3968–3972 (1991).

    PubMed  CAS  Google Scholar 

  35. K. Kamakura, S. Ishiura, S. Imajoh, et al., “Distribution of calciumactivated neutral protease inhibitor in the central nervous system of the rat,”J. Neurosci. Res.,31, No. 3, 543–548 (1992).

    Article  PubMed  CAS  Google Scholar 

  36. A. Okitani, D. E. Goll, M. H. Stromer, and R. M. Robson, “Intracellular inhibitor of a Ca2+-activated protease involved in myofibrillar protein turnover,”Fed. Proc.,35, No. 11, 1746 (1976).

    Google Scholar 

  37. J. D. Shannon and D. E. Goll, “Properties of a protein that is purified from bovine skeletal muscle that inhibits the Ca2+-dependent proteinase,”Prog. Clin. Biol. Res.,180, 257–259 (1985).

    PubMed  CAS  Google Scholar 

  38. E. Takano, M. Maki, H. Mori, et al., “Pig heart calpastatin: identification of repetitive domain structures and anomalous behavior in polyacrylamide gel electrophoresis,”Biochemistry,27, No. 6, 1964–1972 (1988).

    Article  PubMed  CAS  Google Scholar 

  39. T. Uemori, T. Shimojo, K. Asada, et al., “Characterization of a functional domain of human calpastatin,”Biochem. Biophys. Res. Commun.,166, No. 3, 1485–1493 (1990).

    Article  PubMed  CAS  Google Scholar 

  40. H. P. Kapprell and D. E. Goll, “Effect of Ca2+ on binding of the calpains to calpastatin,”J. Biol. Chem.,264, No. 30, 17888–17896 (1989).

    PubMed  CAS  Google Scholar 

  41. T. Nishimura and D. E. Goll, “Binding of calpain fragments to calpastatin,”J. Biol. Chem.,266, No. 18, 11842–11850 (1991).

    PubMed  CAS  Google Scholar 

  42. H. Kawasaki, Y. Emori, and K. Suzuki, “Calpastatin has two distinct sites for interaction with calpain-effect of calpastatin fragments on the binding of calpain to membranes,”Arch. Biochem. Biophys.,305, No. 2, 467–472 (1993).

    Article  PubMed  CAS  Google Scholar 

  43. H. Q. Yang, H. Ma, E. Takano, et al., “Analysis of calcium-dependent interaction between amino-terminal conserved region of calpastatin functional domain and calmodulin-like domain of μ-calpain large subunit,”J. Biol. Chem.,269, No. 29, 18977–18984 (1994).

    PubMed  CAS  Google Scholar 

  44. H. Kawasaki and S. Kawashima, “Regulation of the calpaincalpastatin system by membranes,”Mol. Membrane Biol.,13, No. 4 217–224 (1996).

    CAS  Google Scholar 

  45. F. Salamino, R. De Tullio, P. Mengotti, et al., “Differential regulation of μ- and m-calpain in rat hearts perfused with Ca2+ and cAMP,”Biochem. Biophys. Res. Commun.,202, No. 3, 1197–1203 (1994).

    Article  PubMed  CAS  Google Scholar 

  46. F. Salamino, M. Averna, I. Tedesco, et al., “Modulation of rat brain calpastatin efficiency by post-translational modifications,”FEBS Lett.,412, No. 3, 433–438 (1997).

    Article  PubMed  CAS  Google Scholar 

  47. M. E. Figueiredo-Pereira, N. Banik, and S. Wilk, “Comparison of the effect of calpain inhibitors on two extralysosomal proteinases: the multicatalytic proteinase complex and m-calpain,”J. Neurochem.,62, No. 5, 1989–1994 (1994).

    Article  PubMed  CAS  Google Scholar 

  48. K. K. Wang, R. Nath, A. Posner, et al., “An alpha-mercaptoacrylic acid derivative is a selective nonpeptide cell-permeable calpain inhibitor and is neuroprotective,”Proc. Natl. Acad. Sci. USA,93, No. 13, 6687–6692 (1996).

    Article  PubMed  CAS  Google Scholar 

  49. S. Pontremoli, P. L. Viotti, M. Michetti, et al., “Identification of an endogenous activator of calpain in rat skeletal muscle,”Biochem. Biophys. Res. Commun.,171, No. 2, 569–574 (1990).

    Article  PubMed  CAS  Google Scholar 

  50. S. Pontremoli, E. Melloni, P. L. Viotti, et al., “Isovalerylcarnitine is a specific activator of the high calcium requiring calpain forms,”Biochem. Biophys. Res. Commun.,167, No. 1, 373–380 (1990).

    Article  PubMed  CAS  Google Scholar 

  51. E. Melloni, M. Michetti, F. Salamino, and S. Pontremoli, “Molecular and functional properties of a calpain activator protein specific for μ-isoforms,”J. Biol. Chem.,273, No. 21, 12827–12831 (1998).

    Article  PubMed  CAS  Google Scholar 

  52. E. Melloni, M. Michetti, F. Salamino, et al., “Mechanism of action of a new component of the Ca(2+)-dependent proteolytic system in rat brain: the calpain activator,”Biochem. Biophys. Res. Commun.,249, No. 3, 583–588 (1998).

    Article  PubMed  CAS  Google Scholar 

  53. S. Pontremoli, B. Sparatore, E. Melloni, et al., “Activation by hemoglobin of the Ca2+-requiring neutral proteinase of human erythrocytes: structural requirements,”Biochem. Biophys. Res. Commun.,123, No. 1, 331–337 (1984).

    PubMed  CAS  Google Scholar 

  54. R. L. Mellgren, K. Song, and M. T. Mericle, “m-Calpain requires DNA for activity n nuclear proteins at low calcium concentrations,”J. Biol. Chem.,268, No. 1, 653–657 (1993).

    PubMed  CAS  Google Scholar 

  55. R. L. Mellgren, “Proteolysis of nuclear proteins by μ-calpain and m-calpain,”J. Biol. Chem.,266, No. 21, 13920–13924 (1991).

    PubMed  CAS  Google Scholar 

  56. J. Najm, P. Vanderklish, A. Etebari, et al., “Complex interactions between polyamines and calpain-mediated proteolysis in rat brain,”J. Neurochem.,57, No. 4, 1151–1158 (1991).

    Article  PubMed  CAS  Google Scholar 

  57. S. Kawashima, M. Hayashi, Y. Saito, et al., “Tissue distribution of calcium-activated neutral proteinases in rat,”Biochim. Biophys. Acta,965, Nos. 2/3, 130–135 (1988).

    PubMed  CAS  Google Scholar 

  58. M. Inomata, M. Nakamura, S. Imajoh-Ohmi, and S. Kawashima, “A variety of calpain/calpastatin systems in mammalian erythrocytes,”Biochim. Biophys. Acta,1178, No. 2, 207–214 (1993).

    PubMed  CAS  Google Scholar 

  59. M. Molinari, J. Anagli, and E. Carafoli, “Ca(2+)-activated neutral protease is active in the erythrocyte membrane in its nonautolyzed 80-kDa form,”J. Biol. Chem.,269, No. 45, 27992–27995 (1994).

    PubMed  CAS  Google Scholar 

  60. A. S. Reddy, F. Safadi, J. R. Beyette, and D. L. Mykles, ”Calciumdependent proteinase activity in root cultures ofArabidopsis,”Biochem. Biophys. Res. Commun.,199, No. 3, 1089–1095 (1994).

    Article  PubMed  CAS  Google Scholar 

  61. M. Pinter, A. Stierandova, and P. Friedrich, “Purification and characterization of a Ca(2+)-activated thiol protease fromDrosophila melanogaster,”Biochemistry,31, No. 35, 8201–8206, (1992).

    Article  PubMed  CAS  Google Scholar 

  62. Y. Emori and K. Saigo, “Calpain localization changes in coordination with actin-related cytoskeletal changes during early embryonic development ofDrosophila,”J. Biol. Chem.,269, No. 40 25137–25142 (1994).

    PubMed  CAS  Google Scholar 

  63. H. Sorimachi, S. Imajoh-Ohmi, Y. Emori, et al., “Molecular cloning of a novel mammalian calcium-dependent protease distinct from both m- and μ-types. Specific expression of the mRNA in skeletal muscle,”J. Biol. Chem.,264, No. 33, 20106–20111, (1989).

    PubMed  CAS  Google Scholar 

  64. H. Sorimachi, N. Toyama-Sorimachi, T. C. Saido, et al., “Musclespecific calpain, p94, is degraded by autolysis immediately after translation, resulting in disappearance from muscle,”J. Biol. Chem.,268, No. 14, 10593–10605 (1993).

    PubMed  CAS  Google Scholar 

  65. H. Sorimachi, S. Ishiura, and K. Suzuki, “A novel tissue-specific calpain species expressed predominantly in the stomach comprises two alternative splicing products with and without Ca(2+)-binding domain,”J. Biol. Chem.,268, No. 26, 19476–19482 (1993).

    PubMed  CAS  Google Scholar 

  66. A. Kishimoto, K. Mikawa, K. Hashimoto, et al., “Limited proteolysis of protein kinase C subspecies by calcium-dependent neutral protease (calpain),”J. Biol. Chem.,264, No. 7, 4088–4092 (1989).

    PubMed  CAS  Google Scholar 

  67. S. Kawashima, H. Akanuma, and K. Asaoka, “Comparison of calpains from rabbit, monkey, human and rat,”Biol. Chem.,379, No. 2, 201–204 (1998).

    Article  PubMed  CAS  Google Scholar 

  68. N. L. Banik, A. K. Chakrabarti, and E. L. Hogan, “Effects of detergents on Ca(2+)-activated neural proteinase activity (calpain) in neural and non-neural tissue: a comparative study,”Neurochem. Res.,17, No. 8, 797–802 (1992).

    Article  PubMed  CAS  Google Scholar 

  69. A. K. Chakrabarti, N. L. Banik, J. M. Powers, and E. L. Hogan, “The regional and subcellular distribution of calcium activated neutral proteinase (CANP) in the bovine central nervous system,”Neurochem. Res.,14, No. 3, 259–266 (1989).

    Article  PubMed  CAS  Google Scholar 

  70. Z. Li and N. L. Banik, “The localization of m-calpain in myelin: immunocytochemical evidence in different areas of rat brain and nerves,”Brain Res.,697, Nos. 1/2, 112–121 (1995).

    PubMed  CAS  Google Scholar 

  71. K. H. Takeuchi, K. I. Saito, and R. A. Nixon, “Immunoassay and activity of calcium-activated neutral proteinase (mCANP): distribution in soluble and membrane-associated fractions in human and mouse brain,”J. Neurochem.,58, No. 4, 1526–1532 (1992).

    Article  PubMed  CAS  Google Scholar 

  72. M. Baudry, R. DuBrin, and G. Lynch, “Subcellular compartmentalization of calcium-dependent and calcium-independent neutral proteases in brain,”Synapse,1, No. 6, 506–511 (1987).

    Article  PubMed  CAS  Google Scholar 

  73. M. N. Malik, M. D. Fenko, and H. M. Wisniewski, “Purification and partial characterization of two forms of Ca2+-activated neutral protease from calfbrain synaptosomes and spinal cord,”Neurochem. Res.,9, No. 2, 233–240 (1984).

    Article  PubMed  CAS  Google Scholar 

  74. Y. Ishizaki, M. Kurokawa, and K. Takahashi, “A calcium-dependent protease associated with the neural cytoskeleton. Purification and partial characterization,”Eur. J. Biochem.,146, No. 2, 331–337 (1985).

    Article  PubMed  CAS  Google Scholar 

  75. R. Gopalakrishna and S. H. Barsky, “Hydrophobic association of calpains with subcellular organelles. Compartmentalization of calpains and the endogenous inhibitor calpastatin in tissues,”J. Biol. Chem.,261, No. 30, 13936–13942 (1986).

    PubMed  CAS  Google Scholar 

  76. R. D. Lane, D. M. Allan, and R. L. Mellgren, “A comparison of the intracellular distribution of μ-calpain, m-calpain, and calpastatin in proliferating human A431 cells,”Exp. Cell. Res.,203, No. 1, 5–16 (1992).

    Article  PubMed  CAS  Google Scholar 

  77. T. Glaser and N. S. Kosower, “Fusion of rat erythrocytes by membrane-mobility agent A2C depends on membrane proteolysis by a cytoplasmic calpain,”Eur. J. Biochem.,159, No. 2, 387–392 (1986).

    Article  PubMed  CAS  Google Scholar 

  78. T. C. Saido, H. Sorimachi, and K. Suzuki, “Calpain: new perspectives in molecular diversity and physiological-pathological involvement,”FASEB J.,8, No. 11, 814–822 (1994).

    PubMed  CAS  Google Scholar 

  79. L. Simonson, M. Baudry, R. Siman, and G. Lynch, “Regional distribution of soluble calcium activated proteinase activity in neonatal and adult rat brain,”Brain Res.,327, Nos. 1/2, 153–159 (1985).

    Article  PubMed  CAS  Google Scholar 

  80. K. Blomgren and J. O. Karlsson, “Developmental changes of calpain and calpastatin in rabbit brain,”Neurochem. Res.,14, No. 11, 1149–1152 (1989).

    Article  PubMed  CAS  Google Scholar 

  81. K. L. Carraway and C. A. Carraway, “Membrane-cytoskeleton interactions in animal cells,”Biochim. Biophys. Acta,988, No. 2, 147–171 (1989).

    PubMed  CAS  Google Scholar 

  82. W. R. Dayton, J. V. Schollmeyer, A. C. Chan, and C. E. Allen, “Elevated levels of a calcium-activated muscle protease in rapidly atrophying muscles from vitamin E-deficient rabbits,”Biochim. Biophys. Acta,584, No. 2, 216–230 (1979).

    PubMed  CAS  Google Scholar 

  83. J. S. Elce, R. Hasspieler, and R. J. Boegman, “Ca2+-activated protease in denervated rat skeletal muscle measured by an immunoassay,”Exp. Neurol.,81, No. 2, 320–329 (1983).

    Article  PubMed  CAS  Google Scholar 

  84. G. Lynch and M. Baudry, “The biochemistry of memory: a new and specific hypothesis,”Science,224, No. 4653, 1057–1063 (1984).

    Article  PubMed  CAS  Google Scholar 

  85. T. A. Benke, A. Luthi, J. T. Isaac, and G. L. Collingridge, “Modulation of AMPA receptor unitary conductance by synaptic activity,”Nature,393, No. 6687, 793–797 (1998).

    PubMed  CAS  Google Scholar 

  86. L. Voronin, A. Byzov, A. Kleschevnikov, et al., “Neurophysiological analysis of long-term potentiation in mammalian brain,”Behav. Brain Res.,66, Nos. 1/2, 45–52 (1995).

    Article  PubMed  CAS  Google Scholar 

  87. R. Siman, J. C. Noszek, and C. Kegerise, “Calpain I activation is specifically related to excitatory amino acid induction of hippocampal damage,”J. Neurosci.,9, No. 5, 1579–1590 (1989).

    PubMed  CAS  Google Scholar 

  88. X. Bi, J. Chen, S. Dang, et al., “Characterization of calpain-mediated proteolysis of GluR1 subunits of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors in rat brain,”J. Neurochem.,68, No. 4, 1484–1494 (1997).

    Article  PubMed  CAS  Google Scholar 

  89. W. Musleh, X. Bi, G. Tocco, et al., “Glycine-induced long-term potentiation is associated with structural and functional modifications of alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid receptors,”Proc. Natl. Acad. Sci. USA,94, No. 17, 9451–9456 (1997).

    Article  PubMed  CAS  Google Scholar 

  90. X. Bi, J. Chen, and M. Baudry, “Developmental changes in calpain activity, GluR1 receptors and in the effect of kainic acid treatment in rat brain,”Neuroscience,81, No. 4, 1123–1135 (1997).

    Article  PubMed  CAS  Google Scholar 

  91. X. Bi, V. Chang, E. Molnar, et al., “The C-terminal domain of glutamate receptor subunit 1 is a target for calpain-mediated proteolysis,”Neuroscience,73, No. 4, 903–906 (1996).

    Article  PubMed  CAS  Google Scholar 

  92. A. Wechsler and V. I. Teichberg, “Brain spectrin binding to the NMDA receptor is regulated by phosphorylation, calcium and calmodulin,”EMBO J.,17, No. 14, 3931–3939 (1998).

    Article  PubMed  CAS  Google Scholar 

  93. G. Lynch, “Memory and the brain: unexpected chemistries and a new pharmacology,”Neurobiol. Learn. Mem.,70, Nos. 1/2, 82–100 (1998).

    Article  PubMed  CAS  Google Scholar 

  94. T. Suzuki, K. Okumura-Noji, A. Ogura, et al., “Calpain may produce a Ca(2+)-independent form of kinase C in long-term potentiation”Biochem. Biophys. Res. Commun.,189, No. 3, 1515–1520 (1992).

    Article  PubMed  CAS  Google Scholar 

  95. S. Hrabetova and T. C. Sacktor, “Bidirectional regulation of protein kinase M zeta in the maintenance of long-term potentiation and long-term depression,”J. Neurosci.,16, No. 17, 324–333 (1996).

    Google Scholar 

  96. A. Barria, D. Muller, V. Derkach, et al., “Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation,”Science,276, No. 5321, 2042–2045 (1997).

    Article  PubMed  CAS  Google Scholar 

  97. J. S. Sessoms, S. J. Chen, D. M. Chetkovich, et al. “Ca(2+)-induced persistent protein kinase C activation in rat hippocampal homogenates,”Second Messengers Phosphoproteins,14, No. 3, 109–126 (1992).

    PubMed  Google Scholar 

  98. C. M. Cressman, P. S. Mohan, R. A. Nixon, and T. B. Shea, “Proteolysis of protein kinase C: mM and microM calcium-requiring calpains have different abilities to generate, and degrade the free catalytic subunit, protein kinase M,”FEBS Lett.,367, No. 3, 223–227 (1995).

    Article  PubMed  CAS  Google Scholar 

  99. D. G. Beer, M. S. Butley, and A. M. Malkinson, “Developmental changes in the endogenous Ca2+-stimulated proteolysis of mouse lung cAMP-dependent protein kinases,”Arch. Biochem. Biophys.,228, No. 1, 207–219 (1984).

    Article  PubMed  CAS  Google Scholar 

  100. A. P. Kwiatkowski and M. M. King, “Autophosphorylation of the type II calmodulin-dependent protein kinase is essential for formation of a proteolytic fragment with catalytic activity. Implications for long-term synaptic potentiation,”Biochemistry,28, No. 13, 5380–5385 (1989).

    Article  PubMed  CAS  Google Scholar 

  101. J. W. Hell, R. E. Westenbroek, L. J. Breeze, et al., “N-methyl-D-aspartate receptor-induced proteolytic conversion of postsynaptic class C L-type calcium channels in hippocampal neurons,”Proc. Natl. Acad. Sci. USA,93, No. 8, 3362–3367 (1996).

    Article  PubMed  CAS  Google Scholar 

  102. J. L. Dinerman, T. M. Dawson, M. J. Schell, et al., “Endothelial nitric oxide synthase localized to hippocampal pyramidal cells: implications for synaptic plasticity,”Proc. Natl. Acad. Sci. USA,91, No. 10, 4214–4218 (1994).

    Article  PubMed  CAS  Google Scholar 

  103. J. F. Kerwin, R. J. Lancaster, and P. L. Feldman, “Nitric oxide: a new paradigm for second messengers,”J. Med. Chem.,38, No. 22, 4343–4362 (1995).

    Article  PubMed  CAS  Google Scholar 

  104. I. Hajimohammadreza, K. J. Raser, R. Nath, et al., “Neuronal nitric oxide synthase and calmodulin-dependent protein kinase II alpha undergo neurotoxin-induced proteolysis,”J. Neurochem.,69, No. 3, 1006–1013 (1997).

    Article  PubMed  CAS  Google Scholar 

  105. R. Laine and P. R. de Montellano, “Neuronal nitric oxide synthase isoforms α and μ are closely related to calpain-sensitive proteins,”Mol. Pharmacol.,54, No. 2, 305–312 (1998).

    PubMed  CAS  Google Scholar 

  106. A. S. Harris and J. S. Morrow, “Calmodulin and calcium-dependent protease I coordinately regulate the interaction of fodrin with actin,”Proc. Natl. Acad. Sci. USA,87, No. 8, 3009–3013 (1990).

    Article  PubMed  CAS  Google Scholar 

  107. R. J. Hu and V. Bennett, “In vitro proteolysis of brain spectrin by calpain I inhibits association of spectrin with ankyrin-independent membrane binding site(s),”J. Biol. Chem.,266, No. 27, 18200–18205 (1991).

    PubMed  CAS  Google Scholar 

  108. J. E. Schollmeyer, “Calpain II involvement in mitosis,”Science,240, No. 4854, 911–913 (1988).

    Article  PubMed  CAS  Google Scholar 

  109. J. Moraczewski, E. Piekarska, S. Bonavaud, et al., “Differential intracellular distribution and activities of μ- and m-calpains during the differentiation of human myogenic cells in culture,”C. R. Acad. Sci.,319, No. 8, 681–686 (1996).

    CAS  Google Scholar 

  110. Y. Ishizaki, M. Kurokawa, and K. Takahashi, “A calcium-dependent protease associated with the neural cytoskeleton. Purification and partial characterization,”Eur. J. Biochem.,146, No. 2, 331–337 (1985).

    Article  PubMed  CAS  Google Scholar 

  111. X. Y. Xie and J. N. Barrett, “Membrane resealing in cultured rat septal neurons after neurite transection: evidence for enhancement by Ca(2+)-triggered protease activity and cytoskeletal disassembly,”J. Neurosci.,11, No. 10, 3257–3267 (1991).

    PubMed  CAS  Google Scholar 

  112. K. Sato, Y. Saito, and S. Kawashima, “Identification and characterization of membrane-bound calpains in clathrin-coated vesicles from bovine brain,”Eur. J. Biochem.,230, No. 1, 25–31 (1995).

    Article  PubMed  CAS  Google Scholar 

  113. A. Sheppard, J. Wu, B. A. Bahr, and G. Lynch, “Compartmentation and glycoprotein substrates of calpain in the developing rat brain,”Synapse,9, No. 3, 231–234 (1991).

    Article  PubMed  CAS  Google Scholar 

  114. D. Seiffert, “Hydrolysis of platelet vitronectin by calpain,”J. Biol. Chem.,271, No. 19, 11170–11176 (1996).

    PubMed  CAS  Google Scholar 

  115. S. M. Schoenwaelder, Y. Yuan, P. Cooray, et al., “Calpain cleavage of focal adhesion proteins regulates the cytoskeletal attachment of integrin αIIbβ3 (platelet glycoprotein IIb/IIIa) and the cellular retraction of fibrin clots,”J. Biol. Chem.,272, No. 3, 1694–1702 (1997).

    PubMed  CAS  Google Scholar 

  116. A. F. Greenwood and R. S. Jope, “Brain, G-protein proteolysis by calpain: enhancement by lithium,”Brain Res.,636, No. 2 320–326 (1994).

    Article  PubMed  CAS  Google Scholar 

  117. R. A. Rison and P. K. Stanton, “Long-term potentiation and N-methyl-D-aspartate receptors: foundations of memory and neurologic disease?,”Neurosci. Biobehav. Rev.,19, No. 4, 533–552 (1995).

    Article  PubMed  CAS  Google Scholar 

  118. K. Saito, J. S. Elce, J. E. Hamos, and R. A. Nixon, “Widespread activation of calcium-activated neutral proteinase (calpain) in the brain in Alzheimer disease: a potential molecular basis for neuronal degeneration,”Proc. Natl. Acad. Sci. USA,90, No. 7, 2628–2632 (1993).

    Article  PubMed  CAS  Google Scholar 

  119. R. A. Nixon, K. I. Saito, F. Grynspan, et al., “Calcium-activated neutral proteinase (calpain) system in aging and Alzheimer’s disease,”Ann. New York Acad. Sci.,747, 77–91 (1994).

    Article  CAS  Google Scholar 

  120. T. Yamazaki, C. Haass, T. C. Saido, et al., “Specific increase in amyloid beta-protein 42 secretion ratio by calpain inhibition,”Biochemistry,36, No. 27, 8377–8383 (1997).

    Article  PubMed  CAS  Google Scholar 

  121. T. Tsuji, S. Shimohama, J. Kimura, and K. Shimizu, “m-Calpain (calcium-activated neutral proteinase) in Alzheimer’s disease brains,”Neurosci. Lett.,248, No 2, 109–112 (1998).

    Article  PubMed  CAS  Google Scholar 

  122. D. Mantle and E. K. Perry, “Comparison of Ca(2+)-activated proteinase enzyme and endogenous inhibitor activity in brain tissue from normal and Alzheimer’s disease cases,”J. Neurol. Sci.,102, No. 2, 220–224 (1991).

    Article  PubMed  CAS  Google Scholar 

  123. K. Blomgren, S. Kawashima, T. C. Saido, et al., “Fodrin degradation and subcellular distribution of calpains after neonatal rat cerebral hypoxic-ischemia,”Brain Res.,684, No. 2, 143–149 (1995).

    Article  PubMed  CAS  Google Scholar 

  124. R. T. Bartus, P. J. Elliott, N. J. Hayward, et al., “Calpain as a novel target for treating acute neurodegenerative disorders,”Neurol. Res.,17, No. 4, 49–58 (1995).

    Google Scholar 

  125. M. Yokota, T. C. Saido, E. Tani, et al., “Three distinct phases of fodrin proteolysis induced in postischemic hippocampus. Involvement of calpain and unidentified protease,”Stroke,26, No. 10, 1901–1907 (1995).

    PubMed  CAS  Google Scholar 

  126. R. W. Neumar, S. M. Hagle, D. J. DeGracia, et al., “Brain μ-calpain autolysis during global cerebral ischemia,”J. Neurochem.,66, No. 1, 421–424 (1996).

    Article  PubMed  CAS  Google Scholar 

  127. K. Blomgren, A. McRae, A. Elmered, et al., “The calpain proteolytic system in neonatal hypoxic-ischemia,”Ann. New York Acad. Sci.,825, 104–119 (1997).

    CAS  Google Scholar 

  128. S. Fukuda, K. Harada, M. Kunimatsu, et al., “Postischemic reperfusion induces alpha-fodrin proteolysis by m-calpain in the synaptosome and nucleus in rat brain,”J. Neurochem.,70, No. 6, 2526–2532 (1998).

    Article  PubMed  CAS  Google Scholar 

  129. K. Harada, S. Fukuda, M. Kunimoto, and K. Yoshida, “Distribution of ankyrin isoforms and their proteolysis after ischemia and reperfusion in rat brain,”J. Neurochem.,69, No. 1, 371–376 (1997).

    Article  PubMed  CAS  Google Scholar 

  130. R. W. Neumar, D. J. DeGracia, L. L. Konkoly, et al., “Calpain mediates eukaryotic initiation factor 4G degradation during global brain ischemia,”J. Cerebr. Blood Flow Metab.,18, No. 8, 876–881 (1998).

    CAS  Google Scholar 

  131. K. Ostwald, M. Hayashi, M. Nakamura, and S. Kawashima, “Subcellular distribution of calpain and calpastatin immunoreactivity and fodrin proteolysis in rabbit hippocampus after hypoxia and glucocorticoid treatment,”J. Neurochem.,63, No. 3, 1069–1076 (1994).

    Article  PubMed  CAS  Google Scholar 

  132. A. Kampfl, R. Posmantur, R. Nixon, et al., “μ-calpain activation and calpain-mediated cytoskeletal proteolysis following traumatic brain injury,”J. Neurochem.,67, No. 4, 1575–1583 (1996).

    Article  PubMed  CAS  Google Scholar 

  133. R. V. Deshpande, J. M. Goust, A. K. Chakrabarti, et al., “Calpain expression in lymphoid cells. Increased mRNA and protein levels after cell activation,”J. Biol. Chem.,270, No. 6, 2497–2505 (1995).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Neirofiziologiya/Neurophysiology, Vol. 32, No. 2, pp. 142–156, March–April, 2000.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kastrykina, T.F., Malysheva, M.K. Calpain as one of the calcium signal mediators in the cell. Neurophysiology 32, 111–123 (2000). https://doi.org/10.1007/BF02515178

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02515178

Keywords

Navigation