Skip to main content
Log in

Left-ventricular pressure gradients: a computer-model simulation

  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Both invasive left-ventricular pressure measurements and non-invasive colour M-mode echographic measurements have shown the existence of intraventricular pressure gradients (IVPGs) during early filling. The mechanisms responsible for these IVPG cannot be completely explained by the experiments. Therefore a one-dimensional numerical model is developed and validated. The model describes filling (both velocities and pressures) along a left ventricular (LV) base-apex axis. Blood-wall interaction in the left ventricle with moving boundaries is taken into account. The computational results for a canine heart indicate that the observed IVPGs during filling are the consequence of a complex interaction between, on the one hand, pressure waves travelling in the LV and, on the other hand, LV geometry, relaxation and compliance. The computational results indicate the pressure dependency of wavespeed (0.77–1.90 m−1 s) for different mean intraventricular pressures (0.88–5.00 mmHg) and IVPGs up to 2 mmHg, independent of the ratio of end systolic volume and equilibrium volume. Increasing relaxation rate not only decreases minimum basal pressure (2.8 instead of 3.6 mmHg) but also has a strong influence on the time delay between the minimum basal and apical pressures (14 ms instead of 49 ms). The results sustain the hypothesis that pressure-wave propagation determines IVPGs and that IVPGs are no proof of elastic recoil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bloom, W.L. (1955): ‘Diastolic filling of the beating excised heart’,Am. J. Physiol.,187, pp. 143–44

    Google Scholar 

  • Courtois, M., Kovacs, S.J., andLudbrook, P.A. (1988): ‘Transmitral pressure-flow velocity relation. Importance of regional pressure gradients in the left ventricle during diastole’,Circulation,78, pp. 661–671

    Google Scholar 

  • Davie, A., Francis, C., Carnana, L., Sutherland, andG., McMurray, J. (1977): ‘The prevalence of left ventricular diastolic filling abnormalities in patients with suspected heart failure’,Eur. Heart J.,18, (6), pp. 981–984

    Google Scholar 

  • Gilbert, J.C., andGlantz, S.A. (1989): ‘Determinants of left ventricular filling and the diastolic pressure-volume relation’,Circ. Res.,64, p. 827

    Google Scholar 

  • Greenberg, N.L., Vandervoort, P.M., andThomas, J.D. (1996): ‘Estimation of instantaneous transmitral pressure difference from color Doppler M-mode echocardiography’,Am. J. Physiol.,271, (Heart Circ. Physiol.) pp. H1267–1276

    Google Scholar 

  • Ling, D., Rankin, J.S., Edwards, C.H., McHale, P.A., andAnderson, R.W. (1979): ‘Regional diastolic mechanics of the left ventricle in the conscious dog’,Am. J. Physiol.,236, pp. 323–330

    Google Scholar 

  • Mirsky, I. (1973): ‘Ventricular and arterial wall stresses based on large deformation analysis’,Biophys. J.,13, pp. 1141–1159

    Article  MathSciNet  Google Scholar 

  • Nikolic, S., Fenely, M., Pajaeo, O., Scott Rankin, J., andYellin, E. (1995): ‘Origin of regional pressure gradients in the left ventricle during early diastole’,Am. J. Physiol.,268, pp. 550–557

    Google Scholar 

  • Nishimura, R., Abel, M., Hatle, M., Tajik, A. (1990): ‘Relation of pulmonary vein to mitral flow velocities by transesophageal Doppler echocardiography. Effect of different loading conditions’,Circulation,81, p. 1488

    Google Scholar 

  • Owen, A. (1993): ‘A numerical model of early diastolic filling: importance of intraventricular pressure wave propagation’,Cardiovas. Res.,27, pp. 255–261

    Article  Google Scholar 

  • Pai, R., andBuech, G. (1996): ‘New Doppler measures of left ventricular dysfunction’,Clin. Cardiol.,19,(4), pp. 277–88

    Article  Google Scholar 

  • Pasipoularides, A., Murgo, J., Miller, J., andCraiga, W. (1987): ‘Nonobstructive left ventricular ejection pressure gradients in man’,Circ. Res.,61, (2), pp. 220–227

    Google Scholar 

  • Peskin, C., andMcQueen, D. (1989): ‘A three-dimensional computational method for blood flow in the heart. Immersed elastic fibers in a viscous incompressible fluid’,J. Comput. Phys.,81, pp 372–405

    Article  MATH  MathSciNet  Google Scholar 

  • Redaelli, A., andMontevecchi, F. (1996): ‘Computational evaluation of intraventricular pressure gradients based on a fluid-structure approach’,J. Biomed. Eng,118, (4), pp. 529–537

    Google Scholar 

  • Stugaard, M., Smiseth, O., Risae, C., andIhlen, H. (1995): ‘Intraventricular early diastolic velocity profile during acute myocardial ischemia: a color M-mode Doppler echocardiography study’,J. Am. Soc. Echocardiogr.,8,(3), pp. 270–279

    Article  Google Scholar 

  • Tyberg, J.V., Keon, W.J., Sonnenblick, E.H., andUrschel, C.W. (1970): ‘Mechanics of ventricular diastole’,Cardiovasc. Res.,4, pp. 423–28

    Article  Google Scholar 

  • Vierendeels, J., Verdonck, P., andDick, E. (1997): ‘Assessment of intraventricular pressure gradients during diastole with a 1D moving fluid-structure interaction model’. Proc. ASME Summer Meeting, FEDSM97-3 428.

  • Yellin, E.L., Hori, M., Yoran, C., Sonnenblick, E.H., Gabbay, S., andFrater, R.W.M. (1986): ‘Left ventricular relaxation in the filling and nonfilling intact canine heart’,Am. J. Physiol.,250, pp. H620-H629

    Google Scholar 

  • Yellin, E.L., Nikolic, S., andFrater, R.W. (1990): ‘Left ventricular filling dynamics and diastolic function’,Prog. Cardiovasc. Dis.,32, p. 242

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Verdonck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verdonck, P., Vierendeels, J., Riemslagh, K. et al. Left-ventricular pressure gradients: a computer-model simulation. Med. Biol. Eng. Comput. 37, 511–516 (1999). https://doi.org/10.1007/BF02513338

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02513338

Keywords

Navigation