Skip to main content
Log in

Influence of clay minerals on sorption of bacteriolytic enzymes

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Myxobacteria presumably produce extracellular bacteriolytic enzymes when they are growing in soil. In order to study their ecological significance, adsorption experiments were performed with lytic enzymes produced byMyxococcus virescens in casitone media. Different soils as well as montmorillonite and kaolinite can rapidly adsorb the bacteriolytic but not the proteolytic enzymes. About 1 gm of montmorillonite per liter of cell-free culture solution is enough for the adsorption of 97% of the bacteriolytic enzymes. The adsorption per unit weight is about 100 times greater on montmorillonite than on kaolinite. About 40% of the adsorbed enzymes can be eluted with solutions of high pH or high ionic strength. The only desorbed bacteriolytic enzyme is the alanyl-∈-N-lysine endopeptidase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albert, J. T., and R. D. Harter. 1973. Adsorption of lysozyme and ovalbumin by clay: Effect of clay suspension pH and clay mineral type.Soil Sci. 115: 130–136.

    CAS  Google Scholar 

  2. Alderton, G. W. H. Ward, and H. L. Fevold. 1945. Isolation of lysozyme from egg white.J. Biol. Chem. 157: 43–58.

    CAS  Google Scholar 

  3. Chapman, H. D. 1965. Cation-exchange capacity.In:Methods of Soil Analysis. C. A. Black, D. D. Evans, J. L. White, J. L. Ensminger, and F. E. Clark, editors. Pt. 2, pp. 891–901. Amer. Soc. Agr., Inc., Madison, Wisconsin.

    Google Scholar 

  4. Day, P. R. 1965. Particle fractionation and particle-size analysis.In:Methods in Soil Analysis. C. A. Black, D. D. Evans, J. L. White, J. L. Ensminger, and F. E. Clark, editors. Pt. 1, pp. 545–567. Amer. Soc. Agr., Inc., Madison, Wisconsin.

    Google Scholar 

  5. Dworkin, M. 1966. Biology of the myxobacteria.Ann. Rev. Microbiol. 20: 75–106.

    Article  CAS  Google Scholar 

  6. Filip, Z. 1973. Clay minerals as a factor influencing the biochemical activity of soil microorganisms.Folia Microbiologica 18: 56–74.

    Article  PubMed  CAS  Google Scholar 

  7. Ghuysen, J. M., D. J. Tipper, and J. L. Strominger. 1966. Enzymes that degrade bacterial cell walls.In:Methods in Enzymology, S. P. Collowick and N. O. Kaplan, editors. Vol. 8, pp. 685–699. Academic Press, New York.

    Google Scholar 

  8. Harter, R. D., and G. Stotzky. 1971. Formation of clay-protein complexes.Soil Sci. Soc. Amer. Proc. 35: 383–389.

    Article  CAS  Google Scholar 

  9. Harter, R. D. and G. Stotzky. 1973. X-ray diffraction, electron microscopy, electrophoretic mobility, and pH of some stable smectite-protein complexes.Soil Sci. Soc. Amer. Proc. 37: 116–123.

    Article  CAS  Google Scholar 

  10. Haskå, G. 1971. Extracellular lytic enzymes ofMyxococcus virescens. I. Separation of the bacteriolytic enzymes from the bulk of proteinases.Physiol. Plant. 25: 86–89.

    Article  Google Scholar 

  11. Haskå, G. 1972. Extracellular lytic enzymes ofMyxococcus virescens. II. Purification of three bacteriolytic enzymes and determination of their molecular weights and isoelectric points.Physiol. Plant. 26: 221–229.

    Google Scholar 

  12. Haskå, G. 1974. Extracellular lytic enzymes ofMyxococcus virescens. IV. Purification and characterization of a D-alanyl-∈-N-lysine endopeptidase.Physiol. Plant. 31:252–256.

    Article  Google Scholar 

  13. Haskå, G. and S. Ståhl. 1971. Variants ofMyxococcus virescens exhibiting dispersed growth. Growth and production of extracellular enzymes and slime.Physiol. Plant. 24: 136–142.

    Article  Google Scholar 

  14. McLaren, A. D. 1954a. The adsorption and reactions of enzymes and proteins on kaolinite. I.J. Phys. Chem. 58: 129–137.

    Article  CAS  Google Scholar 

  15. McLaren, A. D. 1954b. The adsorption and reactions of enzymes and proteins on kaolinite. II. The action of chymotrypsin on lysozyme.Soil Sci. Soc. Proc. 18: 170–174.

    Article  CAS  Google Scholar 

  16. McLaren, A. D., and E. F. Estermann. 1956. The adsorption and reactions of enzymes and proteins on kaolinite. III. The isolation of enzyme-substrate complexes.Arch. Biochem. Biophys. 61: 158–173.

    Article  PubMed  CAS  Google Scholar 

  17. McLaren, A. D., and E. F. Estermann. 1957. Influence of pH on the activity of chymotrypsin at a solid-liquid interface.Arch. Biochem. Biophys. 68: 157–160.

    Article  PubMed  CAS  Google Scholar 

  18. McLaren, A. D., G. H. Peterson, and I. Barshad. 1958. The adsorption and reactions of enzymes and proteins on clay minerals: IV. Kaolinite and montmorillonite.Soil Sci. Soc. Proc. 22: 239–244.

    Article  CAS  Google Scholar 

  19. Stotzky, G. 1972. Activity, ecology and population dynamics of microbes in soil.Crit. Rev. Microbiol. 2: 59–137.

    CAS  Google Scholar 

  20. Yermoljeva, Z. W., and I. Bouianowskaja. 1938. Le lysozyme, ses propriétés et ses applications.Acta Medica URSS. 1: 248–257.

    Google Scholar 

  21. Östling, S., and P. Virtama. 1946. A modified preparation of the universal buffer described by Theorell and Stenhagen.Acta Phys. Scand. 11: 289–293.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haskå, G. Influence of clay minerals on sorption of bacteriolytic enzymes. Microb Ecol 1, 234–245 (1974). https://doi.org/10.1007/BF02512391

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02512391

Keywords

Navigation