Skip to main content
Log in

Runge-Kutta methods for quadratic ordinary differential equations

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

Many systems of ordinary differential equations are quadratic: the derivative can be expressed as a quadratic function of the dependent variable. We demonstrate that this feature can be exploited in the numerical solution by Runge-Kutta methods, since the quadratic structure serves to decrease the number of order conditions. We discuss issues related to construction design and implementation and present a number of new methods of Runge-Kutta and Runge-Kutta-Nyström type that display superior behaviour when applied to quadratic ordinary differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. W. Becker,Genetic Algebra, A.M.M. 56 (1949), pp. 697–699.

    Google Scholar 

  2. E. Beltrami,Mathematics for Dynamics Modelling, Academic Press, San Diego, 1987.

    Google Scholar 

  3. B. Buchberger,Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems, Æquationes Mathematicæ, 4 (1970), pp. 374–383.

    Article  MATH  MathSciNet  Google Scholar 

  4. K. Burrage, private communication.

  5. J. C. Butcher,The Numerical Analysis of Ordinary Differential Equations, Wiley, Chichester, 1987.

    MATH  Google Scholar 

  6. M. P. Calvo,Canonical Runge-Kutta-Nyström methods, PhD Thesis, Universidad de Valladolid, 1992.

  7. M. P. Calvo and J. M. Sanz-Serna,Order conditions for canonical Runge-Kutta-Nyström methods, BIT, 32 (1992), pp. 131–142.

    Article  MATH  MathSciNet  Google Scholar 

  8. P. J. Channel and C. Scovel,Symplectic integration of Hamiltonian systems, Non-linearity, 3 (1990), pp. 231–239.

    Google Scholar 

  9. G. Contopoulos, G. Galgani, and A. Giorgilli,On the number of isolating integrals in Hamiltonian systems, Phys. Rev., A18 (1978), pp. 1183–1189.

    Article  Google Scholar 

  10. D. Cox, J. Little, and D. O'Shea,Ideals, Varieties and Algorithms, 2nd ed., Springer-Verlag, New York, 1997.

    MATH  Google Scholar 

  11. E. Hairer and C. Lubich,The lifespan of backward error analysis for numerical integrators, submitted to Numer. Math., 1996.

  12. E. Hairer, S. P. Nørsett and G. Wanner,Solving Ordinary Differential Equations I: Non-stiff Problems, 2nd ed., Springer-Verlag, Berlin, 1993.

    Google Scholar 

  13. E. Hairer and G. Wanner,A theory for Nyström methods, Numer. Math., 20 (1976), pp. 383–400.

    MathSciNet  Google Scholar 

  14. E. Hairer and G. Wanner,Solving Ordinary Differential Equations II: Stiff Problems, Springer-Verlag, Berlin, 1993.

    Google Scholar 

  15. P. S. Hansen,Tools for the analysis of semi-discretized nonlinear wave equation, PhD Thesis, University of Dundee, 1990.

  16. A. Iserles,A First Course in the Numerical Analysis of Differential Equations, Cambridge University Press, Cambridge, 1996.

    MATH  Google Scholar 

  17. D. Kapur and Y. N. Lakshman,Elimination methods: an introduction, in Symbolic and Numerical Computation for Artificial Intelligence, B. Donald, D. Kapur, and J. Mundy, eds., Academic Press, New York, 1992.

    Google Scholar 

  18. D. E. Knuth,Fundamental Algorithms, 2nd ed., Addison Wesley, Reading, MA, 1973.

    MATH  Google Scholar 

  19. D. E. Knuth,Semi-numerical Algorithms, 2nd ed., Addison Wesley, Reading, MA, 1981.

    Google Scholar 

  20. J. D. Lawson,A note on Runge-Kutta processes for quadratic derivative functions, in Proceedings of Combinatorics, Graph Theory and Computing, Louisiana State University, 1970.

  21. T. Y. Li,Numerical solution of multivariate polynomial systems by homotopy continuation methods, Acta Numerica, 6 (1997), pp. 399–436.

    Article  MATH  Google Scholar 

  22. M. Mrozek,Rigourous error analysis of numerical algorithms via symbolic computations, J. Symb. Comp., 22:4 (1996), pp. 435–458.

    Article  MATH  MathSciNet  Google Scholar 

  23. S. P. Nørsett,Semi explicit Runge-Kutta methods, Mathematics and Computation Report No. 6/74, University of Dundee, Scotland, 1974.

    Google Scholar 

  24. D. Okunbor and R. D. Skeel,Explicit canonical methods for Hamiltonian systems, Math. Comp., 59 (1992) 439–455.

    Article  MATH  MathSciNet  Google Scholar 

  25. A. Nijenhuis and H. S. Wilf,Combinatorial Algorithms. 2nd ed., Academic Press, New York, 1978.

    MATH  Google Scholar 

  26. G. P. Ramaswami,Numerical solution of special separable Hamiltonians, PhD Thesis, DAMP, University of Cambridge, England, 1996.

    Google Scholar 

  27. J. M. Sanz-Serna and M. P. Calvo,Numerical Hamiltonian Problems, Chapman & Hall, London, 1994.

    MATH  Google Scholar 

  28. M. Sofroniou,Symbolic derivation of Runge-Kutta methods, J. Symb. Comp., 18 (1994), pp. 265–296.

    Article  MATH  MathSciNet  Google Scholar 

  29. M. Sofroniou,Order stars and linear stability theory, J. Symb. Comp., 21 (1996), pp. 101–131.

    Article  MATH  MathSciNet  Google Scholar 

  30. M. Toda,Theory of Nonlinear Lattices, Springer-Verlag, Berlin, 1981.

    MATH  Google Scholar 

  31. J. H. Van Lint and R. M. Wilson,A Course in Combinatorics, Cambridge University Press, Cambridge, 1992.

    MATH  Google Scholar 

  32. G. Zhong and J. E. Marsden,Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators, Phys. Lett. A, 133 (1988), pp. 134–39.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Gustaf Söderlind.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iserles, A., Ramaswami, G. & Sofroniou, M. Runge-Kutta methods for quadratic ordinary differential equations. Bit Numer Math 38, 315–346 (1998). https://doi.org/10.1007/BF02512370

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02512370

AMS subject classification

Key words

Navigation