Skip to main content
Log in

Wavelet analysis and covariance structure of some classes of non-stationary processes

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

Processes with stationary n-increments are known to be characterized by the stationarity of their continuous wavelet coefficients. We extend this result to the case of processes with stationary fractional increments and locally stationary processes. Then we give two applications of these properties. First, we derive the explicit covariance structure of processes with stationary n-increments. Second, for fractional Brownian motion, the stationarity of the fractional increments of order greater than the Hurst exponent is recovered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abry, P., Flandrin, P., Taqqu, M.S., and Veitch, D. (1999). Wavelets for the analysis, estimation and synthesis of scaling data, InSelf-Similar Network Traffic and Performance Evaluation, to appear.

  2. Averkamp, R. and Houdré, C. A. note on the discrete wavelet transform of second-order processes,IEEE Trans. Inform. Theory, to appear.

  3. Averkamp, R. and Houdré, C. (1998). Some distributional properties of the continuous wavelet transform of random processes,IEEE Trans. Inform. Theory,44(3), 1111–1124.

    Article  MATH  MathSciNet  Google Scholar 

  4. Brockwell, P.J. and Davis, R.A. (1987).Time Series: Theory and Methods, Springer-Verlag, New York.

    Google Scholar 

  5. Cambanis, S. and Houdré, C. (1995). On the continuous wavelet transform of second-order random processes,IEEE Trans. Inform. Theory,41(3), 628–642.

    Article  MATH  MathSciNet  Google Scholar 

  6. Cheng, B. and Tong, H. (1996).A Theory of Wavelet Representation and Decomposition for a General Stochastic Process, Number 115 in Lectures Notes in Statistics. Springer-Verlag, New York, 115–129.

    Google Scholar 

  7. Dijkerman, R. W. and Mazumdar, R.R. (1994). On the correlation structure of the wavelet coefficients of fractional brownian motion,IEEE Trans. Inform. Theory,40(5), 1609–1616.

    Article  MATH  MathSciNet  Google Scholar 

  8. Dijkerman, R.W. and Mazumdar, R.R. (1994). Wavelet representations of stochastic processes and multiresolution stochastic models,IEEE Trans. Signal Proc.,42(7), 1640–1652.

    Article  Google Scholar 

  9. Doob, J.L. (1953).Stochastic Processes, Wiley Publications in Statistics, Wiley, New York.

    MATH  Google Scholar 

  10. Flandrin, P. (1989). On the spectrum of fractional brownian motion,IEEE Trans. Inform. Theory,35(1), 197–199.

    Article  MathSciNet  Google Scholar 

  11. Flandrin, P. (1992). Wavelet analysis and synthesis of fractional brownian motion,IEEE Trans. Inform. Theory,38(2), 910–917.

    Article  MATH  MathSciNet  Google Scholar 

  12. Folland, G.B. (1984).Real Analysis, John Wiley & Sons, New York.

    MATH  Google Scholar 

  13. Gel'fand, I.M. (1955). Generalized random processes,Dokl. Akad. Nauk. SSSR,100, 853.

    MATH  MathSciNet  Google Scholar 

  14. Gel'fand, I.M. and Shilov, G.E. (1964).Generalized Functions. Vol. 1. Academic Press [Harcourt Brace Jovanovich Publishers], New York, [1977]. Properties and operations, Translated from the Russian by Eugene Saletan.

    Google Scholar 

  15. Gel'fand, I.M. and Vilenkin, N.Ya. (1964).Generalized Functions. Vol. 4. Academic Press [Harcourt Brace Jovanovich Publishers], New York, [1977]. Applications of harmonic analysis, Translated from the Russian by Amiel Feinstein.

    Google Scholar 

  16. Granger, C.W.J. and Joyeux, R. (1980). An introduction to long-memory time series models and fractional differencing,J. Time Ser. Anal.,1(1), 15–29.

    MATH  MathSciNet  Google Scholar 

  17. Hosking, J.R.M. (1981). Fractional differencing,Biometrika,68(1), 165–176.

    Article  MATH  MathSciNet  Google Scholar 

  18. Houdré, C. (1990). Harmonizability, v-boundedness, (2,p)-boundedness of stochastic processes,Probab. Th. Rel. Fields,87, 167–188.

    Article  MATH  Google Scholar 

  19. Houdré, C. (1993). Wavelets, probability and statistics: some bridges,Wavelets: Mathematics and Applications, Benedetto, J. and Frazier, M., Eds., CRC Press, Boca Raton, FL, 361–394.

    Google Scholar 

  20. Krim, H. and Pesquet, J.C. (1995). Multiresolution analysis of a class of nonstationary processes,IEEE Trans. Inform. Theory,41, 1010–1020.

    Article  MATH  Google Scholar 

  21. Loève, M. (1978).Probability Theory. II. 4th ed., Springer-Verlag, New York, Graduate Texts in Mathematics, Vol. 46.

    MATH  Google Scholar 

  22. Mallat, S., Papanicolaou, G., and Zhang, Z. (1998). Adaptive covariance estimation of locally stationary processes,Ann. Statist.,26(1), 1–47.

    Article  MATH  MathSciNet  Google Scholar 

  23. Mandelbrot, B.B. and Van Ness, J.W. (1968). Fractional Brownian motions, fractional noises and applications,SIAM Rev.,10, 422–437.

    Article  MATH  MathSciNet  Google Scholar 

  24. Masry, E. (1993). The wavelet transform to stochastic processes with stationary increments and its application to fractional brownian motion,IEEE Trans. Inform. Theory,39(1), 260–264.

    Article  MATH  MathSciNet  Google Scholar 

  25. Masry, E. (1996). Convergence properties of wavelet series expansions of fractional brownian motion.Appl. Comp. Harm. Anal.,3, 239–253.

    Article  MATH  MathSciNet  Google Scholar 

  26. Michálek, J. (1986). Ergodic properties of locally stationary processes,Kybernetika (Prague),22(4), 320–328.

    MATH  MathSciNet  Google Scholar 

  27. Michálek, J. (1986). Spectral decomposition of locally stationary random processes,Kybernetika (Prague),22(3), 244–255.

    MATH  MathSciNet  Google Scholar 

  28. Michálek, J. (1989). Linear transformations of locally stationary processes,Apl. Mat.,34(1), 57–66.

    MATH  MathSciNet  Google Scholar 

  29. Pesquet-Popescu, B. (1998).Modélisation bidimensionnelle de processus non-stationnaires et application à l'étude du fond sous-marin. Ph.D. thesis, Ecole Normale Supérieure de Cachan, July.

  30. Pesquet-Popescu, B. (1999). Wavelet packet analysis of 2d processes with stationary fractional increments,IEEE Trans. Inform. Theory, 1033–1039.

  31. Pesquet-Popescu, B. and Larzabal, P. (1997). 2d-self-similar processes with stationary fractional increments. InFractals in Engineering, Tricot Levy Véhel, Lutton, Ed., Springer-Verlag, Berlin.

    Google Scholar 

  32. Picinbono, B. (1974). Properties and applications of stochastic processes with stationarynth-order increments,Adv. Appl. Prob.,6, 512–523.

    Article  MATH  MathSciNet  Google Scholar 

  33. Pinsker, M.S. (1955). The theory of curves in hilbert space with stationarynth increments, (Russian),Izv. Akad. Nauk SSSR. Ser. Mat.,19, 319–344.

    MATH  MathSciNet  Google Scholar 

  34. Pinsker, M.S. and Yaglom, A.M. (1954). Random processes with stationary increments of thenth order,Dokl. Akad. Nauk. SSSR,94, 385–388.

    MATH  MathSciNet  Google Scholar 

  35. Ramanathan, J. and Zeitouni, O. (1991). On the wavelet transform of fractional brownian motion,IEEE on Information Theory,37(4), 1156–1158.

    Article  MathSciNet  Google Scholar 

  36. Rozanov, Yu.A. (1959). Spectral analysis of abstract functions,Theor. Probab. Appl.

  37. Schwartz, L. (1950).Théorie des Distributions, Hermann, Paris.

    Google Scholar 

  38. Silverman, R.A. (1957).Locally Stationary Random Processes. Div. Electromag. Res., Inst. Math. Sci., New York University. Res. Rep. No. MME-2.

  39. Tewfik, A.H. and Kim, M. (1992). Correlation structure of the discrete wavelet coefficients of fractional brownian motion,IEEE Trans. Inform. Theory,38(2), 904–909.

    Article  MATH  MathSciNet  Google Scholar 

  40. Veitch, D. and Abry, P. (1998). A wavelet based joint estimator for the parameters of Ird.,IEEE Trans. Info. Th., special issue “Multiscale Statistical Signal Analysis and its Application”.

  41. Winkler, H. (1993). Integral representation for stochastic processes withnth stationary increments,Math. Nachr.,163, 35–44.

    MATH  MathSciNet  Google Scholar 

  42. Wong, P.W. (1993). Wavelet decomposition of harmonizable random processes,IEEE Trans. Inform. Theory,39(1), 7–18.

    Article  MATH  MathSciNet  Google Scholar 

  43. Yaglom, A.M. (1958). Correlation theory of processes with randomnth increments,Am. Math. Soc. Transl.,8(2), 87–141.

    MATH  MathSciNet  Google Scholar 

  44. Yaglom, A.M. (1987).Correlation Theory of Stationary and Related Random Functions, Vol. 1, Springer-Verlag, New York.

    MATH  Google Scholar 

  45. Yaglom, A.M. and Pinsker, M.S. (1953). Random processes with stationary increments of thenth order,Dokl. Akad. Nauk. SSSR,90, 731–734.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by C. Houdré

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guérin, CA. Wavelet analysis and covariance structure of some classes of non-stationary processes. The Journal of Fourier Analysis and Applications 6, 403–425 (2000). https://doi.org/10.1007/BF02510146

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02510146

Math Subject Classifications

Keywords and Phases

Navigation