Skip to main content
Log in

HSF recruitment and loss at mostDrosophila heat shock loci is coordinated and depends on proximal promoter sequences

  • Original Articles
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

The heat shock response inDrosophila is primarily dependent on the binding of the heat shock transcription factor, HSF, to conserved sequences in heat shock gene promoters, the heat shock elements (HSEs). Here we examine the kinetic relationship of HSF binding to chromosomal loci and heat shock gene transcription in vivo. The features of heat shock promoters that determine the kinetics of HSF binding are also examined. Analyses of HSF association by indirect immunofluorescence with an anti-HSF antibody reveal that fluorescent signals at many loci on polytene chromosomes rapidly increase and then gradually decrease as heat shock time progresses. While overall amounts of fluorescent signal vary from locus to locus, the patterns of acquisition and loss of HSF at most loci are coordinated with only one identified exception. Immunostaining with an anti-RNA polymerase II antibody indicates that the kinetics of RNA polymerase II accumulation on the heat shock loci are similar to those of HSF. Furthermore, nuclear run-on assays confirm that the major heat shock genes are coordinately transcribed during the attenuation period. In contrast, the kinetics of HSF association with HSE “polymers” in a transgenic fly strain are not coordinated with those of endogenous loci. The addition of core promoter sequences to one of the HSEs found in the polymer restores coordinate HSF binding, suggesting that the kinetic patterns of HSF binding depend on a core promoter located near the HSEs. Finally, the distribution of the heat shock protein HSP70 is examined for its role in regulating the attenuated response of HSF to heat shock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abravaya K, Phillips B, Morimoto RI (1991) Attenuation of the heat shock response in HeLa cells is mediated by the release of bound heat shock transcription factor and is modulated by changes in growth and in heat shock temperatures. Genes Dev 5: 2117–2127

    PubMed  CAS  Google Scholar 

  • Abravaya K, Meyers MP, Murphy SP, Morimoto RI (1992) The human heat shock protein hsp70 interacts with HSF, the transcription factor that regulates heat shock gene expression. Genes Dev 6: 1153–1164

    PubMed  CAS  Google Scholar 

  • Amin J, Ananthan J, Voellmy R (1988) Key features of heat shock regulatory elements. Mol Cell Biol 8: 3761–3769

    PubMed  CAS  Google Scholar 

  • Ashburner M, Bonner JJ (1979) The induction of gene activity inDrosophila by heat shock. Cell 17: 241–254

    Article  PubMed  CAS  Google Scholar 

  • Belyaeva ES, Zhimulev IF (1975) RNA synthesis in theDrosophila melanogaster puffs. Cell Differ 4: 415–427

    Article  Google Scholar 

  • Bienz M, Pelham HRB (1986) Heat shock regulatory elements function as an inducible enhancer in theXenopus hsp70 gene and when linked to a heterologous promoter. Cell 45: 753–760

    Article  PubMed  CAS  Google Scholar 

  • Burtis KC, Thummel CS, Jones CW, Karim FD, Hogness DS (1990) TheDrosophila 74EF early puff contains E74, a complex ecdysone-inducible gene that encodes two ets-related proteins. Cell 61: 85–99

    Article  PubMed  CAS  Google Scholar 

  • Dellavalle RP, Petersen R, Lindquist S (1994) Preferential deadenylation ofhsp70 mRNA plays a key role in regulating Hsp70 expression inDrosophila melanogaster, 14: 3646–3659

    CAS  Google Scholar 

  • DiDomenico BJ, Bugaisky GE, Lindquist S (1982a) Heat shock and recovery are mediated by different translational mechanisms. Proc Natl Acad Sci USA 79: 6181–6185

    Article  PubMed  CAS  Google Scholar 

  • DiDomenico BJ, Bugaisky GE, Lindquist S (1982b) The heat shock response is self-regulated at both the transcriptional and posttranscriptional levels. Cell 31: 593–603

    Article  PubMed  CAS  Google Scholar 

  • Farrell-Towt J, Sanders MM (1984) Noncoordinate histone synthesis in heat-shockedDrosophila cells is regulated at multiple levels. Mol Cell Biol 4: 2676–2685

    PubMed  CAS  Google Scholar 

  • Fernandes M, Xiao H, Lis JT (1994) Fine structure analyses of theDrosophila andSaccharomyces heat shock factor-heat shock element interactions. Nucleic Acids Res 22: 167–173

    PubMed  CAS  Google Scholar 

  • Fernandes M, Xiao H, Lis JT (1995) Binding of heat shock factor to and transcriptional activation of heat shock genes inDrosophia. Nucleic Acids Res 23:4799–4804

    PubMed  CAS  Google Scholar 

  • Gilmour DS, Lis JT (1985) In vivo interactions of RNA polymerase II with genes ofDrosophila melanogaster. Mol Cell Biol 5: 2009–2018

    PubMed  CAS  Google Scholar 

  • Gilmour DS, Lis JT (1986) RNA polymerase II interacts with the promoter region of the noninducedhsp70 gene inDrosophila melanogaster cells. Mol Cell Biol 6: 3984–3989

    PubMed  CAS  Google Scholar 

  • Gilmour DS, Lis JT (1987) Protein-DNA crosslinking reveal dramatic variation in RNA polymerase II density on different histone repeats ofDrosophila melanogaster. Mol Cell Biol 7: 3341–3344

    PubMed  CAS  Google Scholar 

  • Hackett RW, Lis JT (1983) Localization of thehsp83 transcript within a 3292 nucleotide sequence from the 63B heat shock locus ofD. melanogaster. Nucleic Acids Res 11: 7011–7030

    PubMed  CAS  Google Scholar 

  • Holmgren R, Livak K, Morimoto R, Freund R, Meselson M (1979) Studies of cloned sequences from fourDrosophila heat shock loci. Cell 18: 1359–1370

    Article  PubMed  CAS  Google Scholar 

  • Jamrich M, Greenleaf AL, Bautz EKF (1977) Localization of RNA polymerase in polytene chromosomes ofDrosophila melanogaster. Proc Natl Acad Sci USA 74: 2079–2083

    Article  PubMed  CAS  Google Scholar 

  • Kim S-J, Tsukiyama T, Lewis MS, Wu C (1994) Interaction of the DNA-binding domain ofDrosophila heat shock factor with its cognate DNA site: a thermodynamic analysis using analytical ultracentrifugation. Protein Sci 3: 1040–1051

    Article  PubMed  CAS  Google Scholar 

  • Lee H-S, Kraus KW, Wolfner MF, Lis JT (1992) DNA sequence requirements for generating paused polymerase at the start ofhsp70. Genes Dev 6: 284–295

    PubMed  CAS  Google Scholar 

  • Lee JM, Greenleaf AL (1991) CTD kinase large subunit is encoded by CTK1, a gene required for normal growth ofSaccharomyces cerevisiae. Gene Expr 1: 149–167

    PubMed  CAS  Google Scholar 

  • Lewis M, Helmsing PJ, Ashburner M (1975) Parallel changes in puffing activity and patterns of protein synthesis in salivary glands ofDrosophila. Proc Natl Acad Sci USA 72: 3604–3608

    Article  PubMed  CAS  Google Scholar 

  • Lindquist S (1980) Varying patterns of protein synthesis inDrosophila during heat shock: implications for regulation. Dev Biol 77: 463–479

    Article  PubMed  CAS  Google Scholar 

  • Lindquist S (1981) Regulation of protein synthesis during heat shock. Nature 293: 311–314

    Article  PubMed  CAS  Google Scholar 

  • Lindquist S, Craig EA (1988) The heat shock proteins. Annu Rev Genet 22: 631–677

    Article  PubMed  CAS  Google Scholar 

  • Lis JT, Neckameyer W, Dubensky R, Costlow N (1981) Cloning and characterization of nine heat-shock-induced mRNAs ofDrosophila melanogaster. Gene 15: 67–80

    Article  PubMed  CAS  Google Scholar 

  • O'Brien T, Lis JT (1991) RNA polymerase II pauses at the 5′ end of the transcriptionally inducedDrosophila hsp70 gene. Mol Cell Biol 11: 5285–5290

    PubMed  Google Scholar 

  • O'Brien T, Lis JT (1993) Rapid changes inDrosophila transcription after an instantaneous heat shock. Mol Cell Biol 13: 3456–3463

    PubMed  Google Scholar 

  • Pardue ML, Kedes LH, Weinberg ES, Birnstiel ML (1977) Localization of sequences coding for histone messenger RNA in the chromosomes ofDrosophila melanogaster. Chromosoma 63: 135–151

    Article  PubMed  CAS  Google Scholar 

  • Perisic O, Xiao H, Lis JT (1989) Stable binding ofDrosophila heat shock factor to head-to-head and tail-to-tail repeats of a conserved 5 bp recognition unit. Cell 59: 797–806

    Article  PubMed  CAS  Google Scholar 

  • Purnell BA, Emanuel PA, Gilmour DS (1994) TFIID sequence recognition of the initiator and sequences farther downstream inDrosophila class II genes. Genes Dev 8: 830–842

    PubMed  CAS  Google Scholar 

  • Rabindran SK, Wisniewski J, Li L, Li GC, Wu C (1994) Interaction between heat shock factor and Hsp70 is insufficient to suppress induction of DNA-binding activity in vivo. Mol Cell Biol 14: 6552–6560

    PubMed  CAS  Google Scholar 

  • Ritossa FM (1962) A new puffing pattern induced by heat shock and DNP inDrosophila. Experientia 18: 571–573

    Article  CAS  Google Scholar 

  • Rougvie AE, Lis JT (1988) The RNA polymerase II molecule at the 5′ end of the uninducedhsp70 gene ofD. melanogaster is transcriptionally engaged. Cell 54: 795–804

    Article  PubMed  CAS  Google Scholar 

  • Rougvie AE, Lis JT (1990) Post-initiation transcriptional control inDrosophila melanogaster. Mol Cell Biol 10: 6041–6045

    PubMed  CAS  Google Scholar 

  • Shopland LS, Hirayoshi K, Fernandes M, Lis JT (1995) HSF access to heat shock elementsin vivo depends critically on promoter architecture defined by GAGA factor, TFIID, and RNA polymerase II binding sites. Genes Dev 9: 2756–2769

    PubMed  CAS  Google Scholar 

  • Simon JA, Sutton CA, Lobell RB, Glaser RL, Lis JT (1985) Determinants of heat shock-induced chromosome puffing. Cell 40: 805–817

    Article  PubMed  CAS  Google Scholar 

  • Spradling AC, Rubin GM (1983) The effect of chromosomal position on the expression of theDrosophila xanthine dehydrogenase gene. Cell 34: 47–57

    Article  PubMed  CAS  Google Scholar 

  • Spradling AC, Pardue ML, Penman S (1977) Messenger RNA in heat-shockedDrosophila cells. J Mol Biol 109: 559–587

    Article  PubMed  CAS  Google Scholar 

  • Vazquez J, Pauli D, Tissieres A (1993) Transcriptional regulation inDrosophila during heat shock: a nuclear run-on analysis. Chromosoma 102: 233–248

    Article  PubMed  CAS  Google Scholar 

  • Velazquez JM, Lindquist S (1984)hsp70: nuclear concentration during environmental stress and cytoplasmic storage during recovery. Cell 36: 655–662

    Article  PubMed  CAS  Google Scholar 

  • Velazquez JM, DiDomenico BJ, Lindquist S (1980) Intracellular localization of heat shock proteins inDrosophila. Cell 20: 679–689

    Article  PubMed  CAS  Google Scholar 

  • Velazquez JM, Sonoda S, Bugaisky GE, Lindquist S (1983) Are HS proteins present in cells that have not been heat shocked. J Cell Biol 96:286–290

    Article  PubMed  CAS  Google Scholar 

  • Voellmy R, Goldschmidt-Clermont M, Southgate R, Tissieres A (1981) A DNA segment isolated from chromosomal site 67B inD. melanogaster contains four closely linked heat-shock genes. Cell 23: 261–270

    Article  PubMed  CAS  Google Scholar 

  • Welch WJ (1993) Heat shock proteins functioning as molecular chaperones: their roles in normal and stressed cells. Philos Trans R Soc Lond Biol Sci 339: 327–333

    CAS  Google Scholar 

  • Westwood JT, Wu C (1993) Activation ofDrosophila heat shock factor: conformational change associated with a monomer-to-trimer transition. Mol Cell Biol 13: 3481–3486

    PubMed  CAS  Google Scholar 

  • Westwood JT, Clos J, Wu C (1991) Stress-induced oligomerization and chromosomal relocalization of heat-shock factor. Nature 353: 822–827

    Article  PubMed  CAS  Google Scholar 

  • Wu C, Wilson S, Walker B, Dawid I, Paisley T, Zimarino V, Ueda H (1987) Purification and properties ofDrosophila heat shock activator protein. Science 238: 1247–1253

    Article  PubMed  CAS  Google Scholar 

  • Xiao H (1989) The nature of heat shock response elements. Ph. D. Thesis, Cornell University, Ithaca, New York

    Google Scholar 

  • Xiao H, Lis JT (1986) A consensus sequence polymer inhibits in vivo expression of heat shock genes. Mol Cell Biol 6: 3200–3206

    PubMed  CAS  Google Scholar 

  • Xiao H, Lis JT (1988) Germline transformation used to define key features of heat-shock response elements. Science 239: 1139–1142

    Article  PubMed  CAS  Google Scholar 

  • Xiao H, Lis JT (1989) Heat shock and developmental regulation of theDrosophila melanogaster hsp83 gene. Mol Cell Biol 9: 1746–1753

    PubMed  CAS  Google Scholar 

  • Xiao H, Persic O, Lis JT (1991) Cooperative binding ofDrosophila heat shock factor to arrays of a conserved 5 bp unit.Cell 64: 585–593

    Article  PubMed  CAS  Google Scholar 

  • Xiao H, Friesen JD, Lis JT (1994) A highly conserved domain of RNA polymerase II shares a common functional element with acidic activation domains of upstream transcription factors. Mol Cell Biol 14: 7507–7516

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Present address: Department of Cell Biology, University of Massachusetts Medical Center, 55 Lake Avenue North, Worcester, MA 01655, USA

Edited by: M.L. Pardue

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shopland, L.S., Lis, J.T. HSF recruitment and loss at mostDrosophila heat shock loci is coordinated and depends on proximal promoter sequences. Chromosoma 105, 158–171 (1996). https://doi.org/10.1007/BF02509497

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02509497

Keywords

Navigation