Skip to main content
Log in

Transcription factors in plants: Physiological functions and regulation of expression

  • Minireview
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

The control of gene expression in plants, as in all other living organisms, is essential for regulation of biological processes, such as body planning, development, differentiation and responses to various environmental signals. Transcription is the initial step at which genes are selected for expression and for modulation of levels of expression. In efforts to elucidate the mechanisms that control gene expression in plants, numerous DNA-binding proteins that interact with plant promoters have been identified and the corresponding cDNAs have been cloned. Some of these proteins are structurally similar to well-characterized transcription factors in animal or yeast cells, while others seem to be unique to plants. Recent studies of plant transcription factors have suggested the biological and molecular functions of several factors. It also appears that post-transcriptional control of levels of transcription factors, as well as the strictly controlled expression of their genes, both temporally and spatially, may be important in the regulation of expression of target genes. This review summarizes recent findings related to the physiological functions of plant transcription factors and the regulation of their activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albani, D., Hammond-kosack, M.C.U., Smith, C., Conlan, S., Colot, V., Holdsworth, M. andBevan, M.W. 1997. The wheat transcriptional activator SPA: a seed-specific bZIP protein that recognizes the GCN4-like motif in the bifactorial endosperm box of prolamin genes. Plant Cell9: 171–184.

    Article  PubMed  CAS  Google Scholar 

  • Aoyama, T., Dong, C.-H., Wu, Y., Carabelli, M., Sessa, G., Ruberti, I., Morelli, G. andChua, N.-H. 1995. Ectopic expression of the Arabidopsis transcriptional activator Athb-1 alters leaf cell fate in tobacco. Plant Cell7: 1773–1785.

    Article  PubMed  CAS  Google Scholar 

  • Baeuerle, P. andBaltimore, D. 1996. NF-ξB: Ten years after. Cell87: 13–20.

    Article  PubMed  CAS  Google Scholar 

  • Baltz, R., Domon, C., Pillay, D.T.N. andSteinmetz, A. 1992. Characterization of a pollen-specific cDNA from sunflower encoding a zinc finger protein. Plant J.2: 713–721.

    Article  PubMed  CAS  Google Scholar 

  • Büttner, M. andSingh, K.B. 1997.Arabidopsis thaliana ethylene-responsive element binding protein (AtEBP), an eth6lene-inducible, GCC box DNA-binding protein interacts with an ocs element binding protein. Proc. Natl. Acad. Sci. USA94: 5961–5966.

    Article  PubMed  Google Scholar 

  • Chen, W., Chao, G. andSingh, K.B. 1996. The promoter of a H2O2-inducible,Arabidopsis GlutathioneS-transferase gene contains closely linked OBF- and OBP1-binding sites. Plant J.10: 955–966.

    Article  PubMed  CAS  Google Scholar 

  • Ciceri, P., Gianazza, E., Lazzari, B., Lippoll, G., Genga, A., Hoschek, G., Schmidt, R.J. andViotti, A. 1997. Phosphorylation of Opaque2 changes diurnally and impacts its DNA binding activity. Plant Cell9: 97–108.

    Article  PubMed  CAS  Google Scholar 

  • Czarnecka-Verner, E., Yuan, C.-X., Fox, P.C. andGurley, W.B. 1995. Isolation and characterization of six heat shock transcription factor cDNA clones from soybean. Plant Mol. Biol.29: 37–51.

    Article  PubMed  CAS  Google Scholar 

  • da Costa e Silva, O., Klein, L., Schmelzer, E., Trezzini, G.F. andHahlbrock, K. 1993. BPF-1, a pathogen-induced DNA-binding protein involved in the plant defense response. Plant J.4: 125–135.

    Article  PubMed  Google Scholar 

  • Damiani, R.D. Jr. andWessler, S.R. 1993. An upstream open reading frame represses expression ofLc, a member of theR/B family of maize transcriptional activators. Proc. Natl. Acad. Sci. USA90: 8244–8248.

    Article  PubMed  CAS  Google Scholar 

  • Datta, N. andCashmore, A.R. 1989. Binding of a pea nuclear protein to promoters of certain photoregulated genes is modulated by phosphorylation. Plant Cell1: 1069–1077.

    Article  PubMed  CAS  Google Scholar 

  • Davies, B., Egea-Cortines, M., de Andrade Silva, E., Saedler, H. andSommer, H. 1996. Multiple interactions amongst floral homeotic MADS box proteins. EMBO J.15: 4330–4343.

    PubMed  CAS  Google Scholar 

  • Dietrich, R.A., Richberg, M.H., Schmidt, R., Dean, C. andDangl, J.L. 1997. A novel zinc finger protein is encoded by the arabidopsisLSD1 gene and functions as a negative regulator of plant cell death. Cell88: 685–694.

    Article  PubMed  CAS  Google Scholar 

  • Dröge-Laser, W., Kaiser, A., Lindsay, W.P., Halkier, B.A., Loake, G.J., Doerner, P., Dixon, R.A. andLamb, C. 1997. Rapid stimulation of a soybean protein-serine kinase that phosphorylates a novel bZIP DNA-binding protein, G/HBF-1, during that induction of early transcription-dependent defenses. EMBO J.16: 726–738.

    Article  PubMed  Google Scholar 

  • Falvo, J.V., Thanos, D. andManiatis, T. 1995. Reversal of intrinsic DNA bends in the IFNβ gene enhancer by transcription factors and the architectural protein HMGI(Y). Cell83: 1101–1111.

    Article  PubMed  CAS  Google Scholar 

  • Gallie, D.R. 1996. Translational control of cellular and viral mRNAs. Plant Mol. Biol.32: 145–158.

    Article  PubMed  CAS  Google Scholar 

  • Goff, S.A., Cone, K.C. andChandler, V.L. 1992. Functional analysis of the transcriptional activator encoded by the maize B gene: evidence for a direct functional interaction between two classes of regulatory proteins. Genes Dev.6: 864–875.

    PubMed  CAS  Google Scholar 

  • Grasser, K.D. 1995. Plant chromosomal high mobility group (HMG) proteins. Plant J.7: 185–192.

    Article  PubMed  CAS  Google Scholar 

  • Grasser, K.D. andFeix, G. 1991. Isolation and characterisation of maize cDNAs encoding a high mobility group protein displaying a HMG-box. Nucleic Acid Res.19: 2573–2577.

    PubMed  CAS  Google Scholar 

  • Grasser, K.D., Hetz W., Griess, E.A. andFeix, G. 1993. Stimulatory effect of the maize HMGa protein on reporter gene expression in maize protoplasts. FEBS Lett.327: 141–144.

    Article  PubMed  CAS  Google Scholar 

  • Harter, K., Kircher, S., Frohnmeyer, H., Krenz, M., Nagy, F. andSchäfer, E. 1994. Light-regulated modification and nuclear translocation of cytosolic G-box binding factors in parsley. Plant Cell6: 545–559.

    Article  PubMed  CAS  Google Scholar 

  • Hartings, H., Maddaloni, M., Lazzaroni, N., Di fonzo, N., Motto, M., Salamini, F. andThompson, R. 1989. TheO2 gene which regulates zein deposition in maize endosperm encodes a protein with structural homologies to transcriptional activators. EMBO J.8: 2795–2801.

    PubMed  CAS  Google Scholar 

  • Hattori, T., Vasil, V., Rosenkrans, L., Hannah, L.C., McCarty, D.R. andVasil, I.K. 1992. TheViviparous-1 gene and abscisic acid activate theC1 regulatory gene for anthocyanin biosynthesis during seed maturation in maize. Genes Dev.6: 609–618.

    PubMed  CAS  Google Scholar 

  • Hoecker, U., Vasil, I.K. andMcCarty, D.R. 1995. Integrated control of seed maturation and gemination programs by activator and repressor functions ofViviparous-1 of maize. Genes Dev.9: 2459–2469.

    PubMed  CAS  Google Scholar 

  • Hunter, T. andKarin, M. 1992. The regulation of transcription by phosphorylation. Cell70: 375–387.

    Article  PubMed  CAS  Google Scholar 

  • Jupin, I. andChua, N.-H. 1996. Activation of the CaMVas-1 cis-element by salicylic acid: differential DNA-binding of a factor related to TGA1a. EMBO J.15: 5679–5689.

    PubMed  CAS  Google Scholar 

  • Katagiri, F. andChua, N.-H. 1992. Plant transcription factors: present knowledge and future challenges. Trends Genet.8: 22–27.

    Article  PubMed  CAS  Google Scholar 

  • Katagiri, F., Lam, E. andChua, N.-H. 1989. Two tobacco DNA-binding proteins with homology to the nuclear factor CREB. Nature340: 727–729.

    Article  PubMed  CAS  Google Scholar 

  • Katagiri, F., Yamazaki, K.-I., Horikoshi, M., Roeder, R.G. andChua, N.-H. 1990. A plant DNA-binding protein increases the number of active preinitiation complexes in a humanin vitro transcription system. Genes Dev.4: 1899–1909.

    PubMed  CAS  Google Scholar 

  • Klein, J., Saedler, H. andHuijser, P. 1996. A new family of DNA binding proteins includes putative transcriptional regulators of theAntirrhinum majus floral meristem identity geneSQUAMOSA. Mol. Gen. Genet.250: 7–16.

    PubMed  CAS  Google Scholar 

  • Klimczak, L., Schindler, U. andCashmore, A.R. 1992. DNA binding activity of the Arabidopsis G-box binding factor GBF1 is stimulated by phosphorylation by casein kinase II from broccoli. Plant Cell4: 87–98.

    Article  PubMed  CAS  Google Scholar 

  • Kosugi, S. andOhashi, Y. 1997. PCF1 and PCF2 specifically bind tocis elements in the rice proliferating cell nuclear antigen gene. Plant Cell9: 1607–1619.

    Article  PubMed  CAS  Google Scholar 

  • Kusano, T., Berberich, T., Harada, M., Suzuki, N. andSugawara, K. 1995. A maize DNA-binding factor with a bZIP motif is induced by low temperature. Mol. Gen. Genet.248: 507–517.

    Article  PubMed  CAS  Google Scholar 

  • Lam, E. 1995. Domain analysis of the plant DNA-binding protein GT1a: Requirement of four putative α-helices for DNA binding and identification of a novel oligomerization region. Mol. Cell. Biol.15: 1014–1020.

    PubMed  CAS  Google Scholar 

  • Lohmer, S., Maddaloni, M., Motto, M., Di Fonzo, N., Hartings, H., Salamini, F. andThompson, R.D. 1991. The maize regulatory locusOpaque-2 encodes a DNA-binding protein which activates the transcription of theb-32 gene. EMBO J.10: 617–624.

    PubMed  CAS  Google Scholar 

  • Lohmer, S., Maddaloni, M., Motto, M., Salamini, F. andThompson, R.D. 1993. Translation of the mRNA of the maize transcriptional activator Opaque-2 is inhibited by upstream open reading frames present in the leader sequence. Plant Cell5: 65–73.

    Article  PubMed  CAS  Google Scholar 

  • Martin, C. andPaz-Ares, J. 1997. MYB transcription factors in plants. Trend Genet.13: 67–73.

    Article  CAS  Google Scholar 

  • McCarty, D.R., Hattori, T., Carson, C.B., Vasil, V., Lazar, M. andVasil, I.K. 1991. TheViviparous-1 developmental gene of maize encodes a novel transcription activator. Cell66: 895–905.

    Article  PubMed  CAS  Google Scholar 

  • McGonigle, B., Bouhidel, K. andIrish, V.F. 1996. Nuclear localization of theArabidopsis APETALA3 and PISTILLATA homeotic gene products depends on their simultaneous expression. Gene Dev.10: 1812–1821.

    PubMed  CAS  Google Scholar 

  • Mena, M., Ambrose, B.A., Meeley, R.B., Briggs, S.P., Yanofsky, M.F. andSchmidt, R.J. 1996. Diversification of C-function activity in maize flower development. Science274: 1537–1540.

    Article  PubMed  CAS  Google Scholar 

  • Menkens, A.E. andCashmore, A.R. 1994. Isolation and characterization of a fourthArabidopsis thaliana G-box-binding factor, which has similarities to Fos oncoprotein. Proc. Natl. Acad. Sci. USA91: 2522–2526.

    Article  PubMed  CAS  Google Scholar 

  • Menkens, A.E., Schindler, U. andCashmore, A.R. 1995. The G-box: a ubiquitous regulatory DNA element in plants bound by the GBF family of bZIP proteins. Trends Biochem. Sci.13: 506–510.

    Article  Google Scholar 

  • Meshi, T. andIwabuchi, M. 1995. Plant transcription factors. Plant Cell Physiol.36: 1405–1420.

    PubMed  CAS  Google Scholar 

  • Miao, Z.-H. andLam, E. 1995. Construction of atrans-dominant inhibitor for members of the TGA family of transcription factors conserved in higher plants. Plant J.7: 887–896.

    Article  PubMed  CAS  Google Scholar 

  • Michael, A.J., Hofer, J.M.I. andEllis, T.H.N. 1996. Isolation by PCR of a cDNA clone from pea petals with similarity to petunia and wheat zinc finger proteins. Plant Mol. Biol.30: 1051–1058.

    Article  PubMed  CAS  Google Scholar 

  • Ni, M., Dehesh, K., Tepperman, J.M. andQuail, P.H. 1996. GT-2:in vivo transcriptional activation activity and definition of novel twin DNA binding domains with reciprocal target sequence selectivity. Plant Cell8: 1041–1059.

    Article  PubMed  CAS  Google Scholar 

  • Niu, X., Adams, C.C., Workman, J.L. andGuiltinan, M.J. 1996. Binding of the wheat basic leucine zipper protein EmBP-1 to nucleosomal binding sites is modulated by nucleosome positioning. Plant Cell8: 1569–1587.

    Article  PubMed  CAS  Google Scholar 

  • Oyama, T., Shimura, Y. andOkada, K. 1997. TheArabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root hypocotyl. Gene Dev.11: 2983–2995.

    PubMed  CAS  Google Scholar 

  • Putterill, J., Robson, F., Lee, K., Simon, R. andCoupland, G. 1995. TheCONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell80: 847–857.

    Article  PubMed  CAS  Google Scholar 

  • Quaedvlieg, N., Dockx, J., Keultjes, G., Kock, P., Wilmering, J., Weisbeek, P. andSmeekens, S. 1996. Identification of a light-regulatedMYB gene from anArabidopsis transcription factor gene collection. Plant Mol. Biol.32: 987–993.

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran, S., Hiratsuka, K. andChua, N.-H. 1994. Transcription factors in plant growth and development. Curr. Opin. Genet. Dev.4: 642–646.

    Article  PubMed  CAS  Google Scholar 

  • Ruberti, I., Sessa, G., Lucchetti, S. andMorelli, G. 1991. A novel class of plant proteins containing a homeodomain with a closely linked leucine zipper motif. EMBO J.10: 1787–1791.

    PubMed  CAS  Google Scholar 

  • Rushton, P.J., Macdonald, H., Huttly, A.K., Lazarus, C.M. andHooley, R. 1995. Members of a new family of DNA-binding proteins bind to a conservedcis-element in the α-Amy2 genes. Plant Mol. Biol.29: 691–702.

    Article  PubMed  CAS  Google Scholar 

  • Ryals, J., Weymann, K., Lawton, K., Friedrich, L., Ellis, D., Steiner, H.-Y., Johnson, J., Delaney, T.P., Jesse, T., Vos, P. andUknes, S. 1997. The ArabidopsisNIM1 protein shows homology to the mammalian transcription factor inhibitor IηB. Plant Cell9: 425–439.

    Article  PubMed  CAS  Google Scholar 

  • Salnz, M.B., Grotewold, E. andChandler, V.L. 1997. Evidence for direct activation of an anthocyanin promoter by the maize C1 protein and comparison of DNA binding by related Myb domain proteins. Plant Cell9: 611–625.

    Article  Google Scholar 

  • Sablowski, R.W.M., Moyano, E., Culianez-Macia, F.A., Schuch, W., Martin, C. andBevan, M. 1994. A flower-specific Myb protein activates transcription of phenylpropanoid biosynthetic genes. EMBO J.13: 128–137.

    PubMed  CAS  Google Scholar 

  • Sarokin, L.A. andChua, N.-H. 1992. Binding sites for two novel phosphoproteins, 3AF5 and 3AF3, are required forrbcS-3A expression. Plant Cell4: 473–483.

    Article  PubMed  CAS  Google Scholar 

  • Scharf, K.-D., Rose, S., Zott, W., Schöff, F. andNover, L. 1990. Three tomato genes code for heat stress transcription factors with a region of remarkable homology to the DNA-binding domain of the yeast HSF. EMBO J.13: 4495–4501.

    Google Scholar 

  • Schindler, U., Menkens, A.E., Beckmann, H., Ecker, J.R. andCashmore, A.R. 1992a. Heterodimerization between light-regulated and ubiquitously expressedArabidopsis GBF bZIP proteins. EMBO J.11: 1261–1273.

    PubMed  CAS  Google Scholar 

  • Schindler, U., Terzaghi, W., Beckmann, H., Kadesch, T. andCashmore, A.R. 1992b. DNA binding site preferences and transcriptional activation properties of theArabidopsis transcription factor GBF1. EMBO J.11: 1275–1289.

    PubMed  CAS  Google Scholar 

  • Schmidt, R.J. 1992. Opaque-2 and zein gene expression.In D.P.S. Verma, ed., The Control of Plant Gene Expression, The CRC Press, Boca Raton, Florida, pp. 337–355.

    Google Scholar 

  • Schmidt, R.J., Burr, F.A., Aukerman, M.J. andBurr, B. 1990. Maize regulatory gene opaque-2 encodes a protein with a “leucine zipper” motif that binds to zein DNA. Proc. Natl. Acad. Sci. USA87: 46–50.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, R.J., Ketudat, M., Aukerman, M.J. andHoschek, G. 1992. Opaque-2 is a transcriptional activator that recognizes a specific target site in 22-kD zein genes. Plant Cell4: 689–700.

    Article  PubMed  CAS  Google Scholar 

  • Sheen, J. 1993. Protein phosphatase activity is required for light-inducible gene expression in maize. EMBO J.12: 3497–3505.

    PubMed  CAS  Google Scholar 

  • Sheen, J. 1996. Ca2+-dependent protein kinases and stress signal transduction in plants. Science274: 1900–1902.

    Article  PubMed  CAS  Google Scholar 

  • Solano, R., Nieto, C. andPaz-Ares, J. 1995. MYB.Ph3 transcription factor fromPetunia hybrida induces similar DNA-bending/distortions on its two types of binding site. Plant J.8: 673–682.

    Article  PubMed  CAS  Google Scholar 

  • Stange, C., Ramirez, I., Gómez, I., Jordana, X. andHoluigue, L. 1997. Phosphorylation of nuclear proteins directs binding to salicylic acid-responsive elements. Plant J.11: 1315–1324.

    Article  PubMed  CAS  Google Scholar 

  • Stockinger, E.J., Gilmour, S.J. andThomashow, M.F. 1997.Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl. Acad. Sci. USA94: 1035–1040.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, M., Kao, C.-Y. andMcCarty, D.R. 1997. The conserved B3 domain of VIVIPAROUS1 has a cooperative DNA binding activity. Plant Cell9: 799–807.

    Article  PubMed  CAS  Google Scholar 

  • Tabata, T., Takase, H., Takayama, S., Mikami, K., Nakatsuka, A., Kawata, T., Nakayama, T. andIwabuchi, M. 1989. A protein that binds to a cis-acting element of wheat histone genes has a leucine zipper motif. Science245: 965–967.

    Article  PubMed  CAS  Google Scholar 

  • Takatsuji, H., Nakamura, N. andKatsumoto, Y. 1994. A new family of zinc finger proteins in Petunia: Structure, DNA sequence recognition, and floral organ-specific expression. Plant Cell6: 947–958.

    Article  PubMed  CAS  Google Scholar 

  • Terzaghi, W.B. andCashmore, A.R. 1995. Light-regulated transcription. Annu. Rev. Plant Physiol. Plant Mol. Biol.46: 445–474.

    Article  CAS  Google Scholar 

  • Ulmasov, T., Hagen, G. andGuilfoyle, T.J. 1997. ARF1, a transcription factor that binds to auxin response elements. Science276: 1865–1868.

    Article  PubMed  CAS  Google Scholar 

  • Unger, E., Parsons, R.L., Schmidt, R.J., Bowen, B. andRoth, B.A. 1993. Dominant negative mutants of Opaque2 suppress transactivation of a 22-kD zein promoter by Opaque2 in maize endosperm cells. Plant Cell5: 831–841.

    Article  PubMed  CAS  Google Scholar 

  • van der Krol, A.R. andChua, N.-H. 1991. The basic domain of plant bZIP proteins facilitates import of a resorter protein into plant nuclei. Plant Cell3: 317–325.

    Article  Google Scholar 

  • Varagona, M.J., Schmidt, R.J. andRaikhel, N.V. 1991. Monocot regulatory protein Opaque-2 is localized in the nucleus of maize endosperm and transformed tobacco plants. Plant Cell3: 105–113.

    Article  PubMed  CAS  Google Scholar 

  • Verma, D.P.S. 1992. Control of Plant Gene Expression. The CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Vicente-Carbajosa, J., Moose, S.P., Parsons, R. andSchmidt, R.J. 1997. A maize zinc-finger protein binds the prolamin box in zein gene promoters and interacts with the basic leucine zipper transcription activator Opaque2. Proc. Natl. Acad. Sci. USA94: 7685–7690.

    Article  PubMed  CAS  Google Scholar 

  • Villain, P., Mache, R. andZhou, D.-X. 1996. The mechanism of GT element-mediated cell type-specific transcriptional control. J. Biol. Chem.271: 32593–32598.

    Article  PubMed  CAS  Google Scholar 

  • Vollbrecht, E., Veit B., Sinha, N. andHake, S. 1991. The developmental geneKNOTTED-1 is a member of a maize homeobox gene family. Nature350: 241–243.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Z.-Y., Kenigsbuch, D., Sun, L., Harel, E., Ong, M.S. andTobin, E.M. 1997. A Myb-related transcription factor is involved in the phytochrome regulation of an ArabidopsisLhcb gene. Plant Cell9: 491–507.

    Article  PubMed  CAS  Google Scholar 

  • Yanagisawa, S. 1995. A novel DNA-binding domain that may form a single zinc finger motif. Nucleic Acid Res.23: 3403–3410.

    PubMed  CAS  Google Scholar 

  • Yanagisawa, S. 1996. Dof DNA-binding proteins contain a novel zinc finger motif. Trends Plant Sci.1: 213–214.

    Google Scholar 

  • Yanagisawa, S. 1997. Dof DNA-binding domains of plant transcription factors contribute to multiple protein-protein interactions. Eur. J. Biochem.250: 403–410.

    Article  PubMed  CAS  Google Scholar 

  • Yanagisawa, S. andIzui, K. 1993. Molecular cloning of two DNA-binding proteins of maize that are structurally different but interact with the same sequence motif. J. Biol. Chem.268: 16028–16036.

    PubMed  CAS  Google Scholar 

  • Yanagisawa, S. andSheen, J. 1998. Involvement of maize Dof zinc finger proteins in tissue-specific and light-regulated gene expression. Plant Cell10: 75–89.

    Article  PubMed  CAS  Google Scholar 

  • Zappavigna, V., Falciola, L., Citterich, M.H., Mavilio, F. andBianchi, M. 1996. HMG1 interacts with HOX proteins and enhances their DNA binding and transcriptional activation. EMBO J.15: 4981–4991.

    PubMed  CAS  Google Scholar 

  • Zhang, B., Chen, W., Foley, R.C., Büttner, M. andSingh, K.B. 1995. Interactions between distinct types of DNA binding proteins enhance binding toocs element promoter sequences. Plant Cell7: 2241–2252.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, J., Tang, X. andMartin, G.B. 1997. The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind acis-element of pathogenesis-related genes. EMBO J.16: 3207–3218.

    Article  PubMed  CAS  Google Scholar 

  • Zwilling, S., Koning, H. andWirth, T. 1995. High mobility group protein 2 functionally interacts with the POU domains of octamer transcription factors. EMBO J.14: 1198–1208.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yanagisawa, S. Transcription factors in plants: Physiological functions and regulation of expression. J. Plant Res. 111, 363–371 (1998). https://doi.org/10.1007/BF02507800

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02507800

Key words

Navigation