Skip to main content
Log in

Estimation of nonlinear autoregressive models using design-adapted wavelets

  • Time Series
  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

We estimate nonlinear autoregressive models using a design-adapted wavelet estimator. We show two properties of the wavelet transform adapted to an autoregressive design. First, in an asymptotic setup, we derive the order of the threshold that removes all the noise with a probability tending to one asymptotically. Second, with this threshold, we estimate the detail coefficients by soft-thresholding the empirical detail coefficients. We show an upper bound on thel 2-risk of these soft-thresholded detail coefficients. Finally, we illustrate the behavior of this design-adapted wavelet estimator on simulated and real data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antoniadis, A. and Fan J. (2001). Regularization of wavelets approximations (with discussion),Journal of the American Statistical Association,96, 939–967.

    Article  MATH  MathSciNet  Google Scholar 

  • Antoniadis, A. and Pham, D. (1998). Wavelet regression for random or irregular design.Computational Statistics and Data Analysis,28, 363–369.

    Article  MathSciNet  Google Scholar 

  • Berkner, K. and Wells, R. (1998). A correlation-dependent model for denoising via nonorthogonal wavelet transforms, Tech. Report No. 98-07, Computational Mathematics Laboratory, Rice University, Houston, Texas.

    Google Scholar 

  • Bosq, D. (1996).Nonparametric Statistics for Stochastic Processes, Springer-Verlag, New York.

    MATH  Google Scholar 

  • Bühlmann, P. and McNeil, A. (2002). An algorithm for nonparametric GARCH modelling,Computational Statistics and Data Analysis,40, 665–683.

    Article  MATH  MathSciNet  Google Scholar 

  • Cai, T. and Brown, L. (1998). Wavelet shrinkage for nonequispaced samples,Annals of Statistics,26 (5), 1783–1799.

    Article  MATH  MathSciNet  Google Scholar 

  • Carnicer, J., Dahmen, W. and Peña, J. (1996). Local decomposition of refinable spaces and wavelets,Applied and Computional Harmonic Analysis,3, 127–153.

    Article  MATH  Google Scholar 

  • Chen, R., Yang, L. and Hafner, C. (2004). Nonparametric multi-step ahead prediction in time series analysis,Journal of the Royal Statistical Society, Series B,66, 669–686.

    Article  MATH  MathSciNet  Google Scholar 

  • Cohen, A., Daubechies, I. and Feauveau, J. (1992). Bi-orthogonal bases of compactly supported wavelets,Communications in Pure and Applied Mathematics,45, 485–560.

    MATH  MathSciNet  Google Scholar 

  • Davidson, J. (1994).Stochastic Limit Theory, Oxford University Press.

  • Delouille, V. and von Sachs, R. (2004). Estimation of nonlinear autoregressive models using design-adapted wavelets. (Available at www.stat.ucl.ac.be/rvs/dp0225rev.pdf)

  • Delouille, V., Franke, J. and von Sachs, R. (2001). Nonparametric stochastic regression with design-adapted wavelets,Sankhya: The Indian Journal of Statistics. Special Issue on Wavelets, Series A,63(3), 328–366.

    Google Scholar 

  • Delouille, V., Simoens, J. and von Sachs, R. (2004). Smooth design-adapted wavelets for nonparametric stochastic regression.Journal of the American Statistical Association,99, 643–658.

    Article  MathSciNet  MATH  Google Scholar 

  • Delyon, B. and Juditsky, A. (1997). On the computation of wavelet coefficients.Journal of Approximation Theory,88, 47–79.

    Article  MATH  MathSciNet  Google Scholar 

  • Donoho, D. (1995). De-noising via soft-thresholding,IEEE Transactions on Information Theory,41, 613–627.

    Article  MATH  MathSciNet  Google Scholar 

  • Donoho, D. and Johnstone, I. (1994). Ideal spatial adaptation by wavelet shrinkage.Biometrika,81, 425–455.

    Article  MATH  MathSciNet  Google Scholar 

  • Donoho, D. and Johnstone, I. (1998). Minimax estimation via wavelet shrinkage.Annals of Statistics,26, 879–921.

    Article  MATH  MathSciNet  Google Scholar 

  • Doukhan P., Massart, P. and Rio, E. (1995). Invariance principles for absolutely regular empirical processes,Annales de l'Institut Henri Pointcaré-Probabilités et Statistiques,31(2), 393–427.

    MATH  MathSciNet  Google Scholar 

  • Engle, R. (1982). Autoregressive conditional heteroskedasticity with estimates of the variance of U.K. inflation,Econometrica,50, 987–1008.

    Article  MATH  MathSciNet  Google Scholar 

  • Franke, J., Holzberger, H. and Müller, M. (2002a). Nonparametric estimation of ARMA- and GARCH-processes,Applied Quantitative Finance, 367–388, Springer-Verlag, Berlin.

    Google Scholar 

  • Franke, J., Kreiss, J.-P. and Mammen, E. (2002b). Bootstrap of kernel smoothing in nonlinear time series,Bernoulli,8, 1–37.

    MATH  MathSciNet  Google Scholar 

  • Franke, J., Kreiss, J.-P., Mammen, E. and Neumann, M. (2002c). Properties of the nonparametric autoregressive bootstrap,Journal of Time Series Analysis,23, 555–585.

    Article  MATH  MathSciNet  Google Scholar 

  • Girardi, M. and Sweldens, W. (1997). A new class of unbalanced Haar wavelets that form an unconditional basis forL p on general measure spaces.Journal of Fourier Analysis and Applications,3(4), 457–474.

    MATH  MathSciNet  Google Scholar 

  • Gouriéroux, C. (1997).ARCH Models and Financial Applications, Springer-Verlag, New York.

    MATH  Google Scholar 

  • Gouriéroux, C. and Monfort, A. (1992). Qualitative threshold ARCH models,Journal of Econometrics,52, 159–199.

    Article  MATH  MathSciNet  Google Scholar 

  • Hafner, C. (1998a). Estimating high frequency foreign exchange rate volatility with nonparametric ARCH models,Journal of Statistical Planning and Inference,68, 247–269.

    Article  MATH  MathSciNet  Google Scholar 

  • Hafner, C. (1998b).Nonlinear Time Series Analysis with Applications to Foreign Exchange Rate Volatility, Physica-Verlag, Heidelberg.

    Google Scholar 

  • Hall, P. and Turlach, B. (1997). Interpolation methods for nonlinear wavelet regression with irregularly spaced design,Annals of Statistics,25(5), 1912–1925.

    Article  MATH  MathSciNet  Google Scholar 

  • Härdle, W. and Tsybakov, A. (1997). Local polynomial estimators of the volatility function in nonparametric autoregression,Journal of Econometrics,81, 223–242.

    Article  MATH  MathSciNet  Google Scholar 

  • Hoffmann, M. (1999). On nonparametric estimation in nonlinear AR(1)-models,Statistics and probability Letters,44, 29–45.

    Article  MATH  MathSciNet  Google Scholar 

  • Jones, D. (1978). Nonlinear regressive processes,Proceedings of the Royal Society London, Series A,360, 71–95.

    MATH  MathSciNet  Google Scholar 

  • Kovac, A. and Silverman, B. (2000). Extending the scope of wavelet regression methods by coefficient-dependent thresholding,Journal of the American Statistical Association,95, 172–183.

    Article  Google Scholar 

  • Masry, E. and Tjøstheim, D. (1995). Nonparametric estimation and identification of nonlinear ARCH time series,Econometric Theory,11, 258–289.

    Article  MathSciNet  Google Scholar 

  • Neumann, M. and Kreiss, J.-P. (1998). Regression-type inference in nonparametric autoregression,Annals of Statistics,26, 1570–1613.

    Article  MATH  MathSciNet  Google Scholar 

  • Neumann, M. and von Sachs, R. (1995). Wavelet thresholding: Beyond the Gaussian i.i.d. situation,Wavelets and Statistics, Lecture notes in statistics (eds. A. Antoniadis and G. Oppenheim)103, 301–329, Springer-Verlag, New York.

    Google Scholar 

  • Robinson, P. (1983). Nonparametric estimators for time series,Journal of Time Series Analysis,4, 185–207.

    MATH  MathSciNet  Google Scholar 

  • Simoens, J. and Vandewalle, S. (2003). A stabilized lifting construction of wavelets on irregular meshes on the interval,SIAM Journal of Scientific Computing,24(4), 1356–1378.

    Article  MATH  MathSciNet  Google Scholar 

  • Sweldens, W. (1997). The lifting scheme: A construction of second generation wavelets,SIAM Journal of Mathematical Analysis,29(2), 511–546.

    Article  MathSciNet  Google Scholar 

  • Sweldens, W. and Schröder, P. (1996). Building your own wavelets at home,Wavelets in Computer Graphics, 15–87, ACM SIGGRAPH Course Notes.

  • Tjøstheim, D. (1994). Non-linear time series: A selective review,Scandinavian Journal of Statistics,21, 97–130.

    MATH  Google Scholar 

  • Tong, H. (1983).Threshold Models in Nonlinear Time Series Analysis, Springer-Verlag, Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Financial support from the contract ‘Projet d'Actions de Recherche Concertées’ nr. 98/03-217 from the Belgian government, and from the IAP research network nr. P5/24 of the Belgian State (Federal Office for Scientific, Technical and Cultural Affairs) is gratefully acknowledged.

About this article

Cite this article

Delouille, V., Von Sachs, R. Estimation of nonlinear autoregressive models using design-adapted wavelets. Ann Inst Stat Math 57, 235–253 (2005). https://doi.org/10.1007/BF02507024

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02507024

Key words and phrases

Navigation