Skip to main content
Log in

Test methods for the movement capability of building sealants. The “state of the art”

  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The ability of a joint sealant to withstand the diurnal and seasonal cyclic movements imposed by variations of temperature, and in some cases of moisture content, of the adjoining claddings on buildings, without loss of adhesion to joint surfaces or other failures, is of primary importance for its long-term performance.

This paper reviews the laboratory test methods which have, been developed to assess this property, from national and international standards. Some simpler test methods for assessing the ability of sealants to withstand maintained extension are also briefly discussed. A number of test apparatuses are described which subject sealants samples simultaneously to cyclic movements and to weather and thus simulate the likely effects of service conditions more closely than is yet possible in laboratory tests.

An attempt is made to evaluate the “State of the Art” of assessing the movement capability of building joint sealants, and recommendations made for future work in this field.

Résumé

La capacité des joints d'étanchéité des bandages adjacents d'endurer les mouvements que leur imposent les variations de température, et dans quelques cas d'humidité, diurnes et saisonnières, sans perte d'adhérence des surfaces jointives ou autres endommagements, est de premi⪻re importance pour les performances à long terme. On présente ici les méthodes d'essai en laboratoire qui ont été mises au point pour évaleur cette capacité—les méthodes d'essai hemologuées (au niveau national et international). On examine aussi brièvement quelques méthodes d'essai plus simples pour évaluer la capacité des joints à endurer un effort d'extension entretenu. On décrit plusieurs équipements d'essai dans lesquels les «échantillons de joints sont soumis simultanément à des mouvements cycliques et aux variations d'ambiance simulant ainsi de plus près les effets probables des conditions de service qu'on ne peut le réaliser avec les essais de laboratoire.

On présente aussi une tentative d'évaluer l'état des connaissances en matière de détermination de la capacité de jeu des joints d'étanchéité, ainsi que des recommendations pour des travaux ultérieurs sur le sujet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. Methods of testing putty, caulking and sealing compounds. Canadian Government Specifications Board CAN2-19.0-M77, 1978 (formerly CGSB19-GP-OM).

  2. Deutsche Normen DIN 52 455 (sheet 2).Testing of materials for joint and glass sealant in building construction. Adhesion and extension test, May 1973.

  3. Sealing compounds for sealing and glazing in buildings. Japanese Industrial Standard JIS-A.5758. Japanese Standards Association, 1979.

  4. British Standards specification for two-part polysulphide-based sealants. BS 4254:1983 BSI.

  5. Specification for one-part gun-grade polysulphide-based sealants. BS 5215:1975 BSI.

  6. Specification for silicone based building sealants. BS 5889:1980 BSI.

  7. Extension-recovery and adhesion of latex sealing compound. ASTM-C-736-72 ASTM, 1972.

  8. USA standard specification for two-component elastomeric sealing compounds for the building trade. USAS A116.1-1967. United States of America Standards Institute, Inc., 1967.

  9. Plastic type sealants used for weathertight sealing joints. Determination of adhesion/cohesion properties under stress. French Standard NF P.85-511.AFNOR, September 1973.

  10. Elastomer-based sealants for joint sealing in building construction. Determination of adhesion and cohesion properties under tensile stress. French Standard NF P.85-504, December 1972.

  11. UEAtc Directive for the assessment of building sealants. Union Européenne pour l'Agrément Technique dans la Construction. The Agrément Board (British Board of Agrément) MOAT, No. 14, 1976.

  12. Standard test method for adhesion and cohesion of elastomeric joint sealants under cyclic movement. ASTM C-719-72, 1972.

  13. Deutsche Normen DIN 18540 Sheet 2:Sealing of exterior wall joints between precast building components in concrete and reinforced concrete using joint sealing compounds: Requirements and testing of joint sealing components, October 1973.

  14. Method for classifying the movement capability of joint sealants. Draft for Development DD69. British Standards Institution, 1980.

  15. Extension/compression test at variable temperature (draft) ISO/TC 59/SC8. Document N 132 International Standards Organisation, 1984.

  16. Single component cold-curing synthetic rubber based sealing compounds (polysulphide) for use in building construction. Draft Standard for Public Review Doc 1767, 1971, Standards Association of Australia.

  17. Australian standard specification 1526.One-part polysulphide-based sealing compounds for the building industry. Standards Association of Australia, 1974.

  18. Elastomer-based sealants for joint sealing. Determination of adhesion and cohesion properties by cyclic extension/compression tests. French Standard NF P.85-505. Association Française de Normalisation (AFNOR), December 1972.

  19. Karpati K. K., Solvason K. R., Sereda P. J.Weathering rack for sealants. J. Coatings Tech., Vol. 49, 1977, No. 626, pp. 44–47.

    Google Scholar 

  20. Brown N. G.Assessment of joint sealants by outdoor exposure in cyclic movement testers. CSIRO Division of Building Research Report No. 01.1-2, 1965.

  21. Fry J. I., Whitney R. S.The natural weathering of sealants in cyclic movement testers. BRANZ Technical Paper P26 Building Research Association of New Zealand, October 1979.

  22. Burstrom P. G.Durability and aging of sealants. Proceedings: First International Conference on Durability of Building Materials and Components. ASTM. Special Technical Publication No. 691, 1980, pp. 643–657.

  23. Beech J. C., Turner C. H. C.Cure of elastomeric building sealants. J. Chem. Tech. Biotechnol., Vol. 33A, 1983, pp. 63–69.

    Google Scholar 

  24. Beech J. C., Turner C. H. C.Cyclic joint movements and sealant testing.— Building Research and Practice, Vol. 11, No. 5, September/October 1983, pp. 287–291.

    Google Scholar 

  25. Standard specification for sealing compounds for the Building Industry, one-component silicone-rubber base. SABS 1305-1980. South African Bureau of Standards.

  26. Ryder J. F., Baker T. A.The extent and rate of joint movements in modern buildings. Proceedings of Symposium “Joint movement, design and materials”, Brighton, UK, 1970, pp. 1–27, Sealants Manufacturers Conference.

  27. Building Sealants: Ability to accommodate movements. Nordtest NT Build 147. Nordtest, Stockholm, Sweden, 1981.

  28. Building Sealants: Elongation properties. Nordtest NT Build 004. Nordtest, Stockholm, Sweden, 1976.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beech, J.C. Test methods for the movement capability of building sealants. The “state of the art”. Materials and Structures 18, 473–482 (1985). https://doi.org/10.1007/BF02498753

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02498753

Keywords

Navigation