Skip to main content
Log in

Liquid chromatography—Post-column photochemical conversion and electrochemical detection for determination of peroxide-based explosives

  • Originals
  • Column Liquid Chromatography
  • Published:
Chromatographia Aims and scope Submit manuscript

Summary

A quantitative trace analysis method for peroxide-based explosives is described. This method uses reversed-phase high-performance liquid chromatography with post-column UV irradiation and electrochemical detection for analysis of triacetonetriperoxide (TATP) and hexamethylenetriperoxide diamine (HMTD). The analytes are initially separated and subsequently decomposed photochemically to hydrogen peroxide, which is finally determined by electrochemical detection. Parameters of the method were optimized for lowest detection limits and fast separation. The limits of detection were 3×10−6 M for both TATP and HMTD, respectively. This detection scheme is significantly easier to use than earlier methods applying photochemical decomposition, enzymatic post-column reaction and fluorescence detection for analysis of peroxide-based explosives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. The Independent, London1996, Oct. 8, 7.

  2. Cooper, R.T.Los Angeles Times 2001, Dec 29, A12.

  3. Evans, H.K.; Tulleners, F.A.J.; Snachez, B.L.; Rasmussen, C.A.J. Forensic. Sci. 1986,31(3), 1119–1125.

    CAS  Google Scholar 

  4. White, G.M.J. Forensic. Sci. 1992,37, 652–656.

    Google Scholar 

  5. Wolffenstein, R.Chem. Ber. 1895,28, 2265–2269.

    CAS  Google Scholar 

  6. Groth, P.Acta Chem. Scand. 1969,23(4), 1311–1329.

    CAS  Google Scholar 

  7. Bellamy, A.J.J. Forensic. Sci. 1999,44(3), 603–608.

    CAS  Google Scholar 

  8. Legler, L.Chem. Ber. 1881,14, 602–604.

    Google Scholar 

  9. Bayer, A.; Villiger, V.Chem. Ber. 1900,33, 2479.

    Article  Google Scholar 

  10. von Grisewald, C.; Siegens, H.Chem. Ber. 1921,54, 490.

    Google Scholar 

  11. Schaefer, W.P.; Fourkas, J.T.; Tiemann, B.G.J. Am. Chem. Soc. 1985,107, 2461–263.

    Article  CAS  Google Scholar 

  12. Zitrin, S.; Kraus, S.; Glattstein, B.Proceedings of the International Symposium on the Analysis and Detection of Explosives, U.S. Government Printing Office, Washington DC,1984, 137–141.

  13. Suelzle, D.; Klaeboe, P.Acta Chem. Scand. 1988,A24, 165–170.

    Article  Google Scholar 

  14. Crowson, A.; Beardah, M.S.Analyst 2001,126, 1689–1693.

    Article  CAS  Google Scholar 

  15. Schulte-Ladbeck, R.; Kolla, P.; Karst, U.Analyst 2002,127, 1152–1154.

    Article  CAS  Google Scholar 

  16. Schulte-Ladbeck, R.; Kolla, P.; Karst, U.Anal. Chem. 2003, in press.

  17. Hong, J.; Maguhn, J.; Freitag, D.; Kattrup, A.Fresenius' J. Anal. Chem. 1998,361, 124–128.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schulte-Ladbeck, R., Karst, U. Liquid chromatography—Post-column photochemical conversion and electrochemical detection for determination of peroxide-based explosives. Chromatographia 57 (Suppl 1), S61–S65 (2003). https://doi.org/10.1007/BF02492084

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02492084

Key Words

Navigation