Skip to main content
Log in

The ontogeny of the vascular cambium inGinkgo biloba roots

  • Published:
The botanical magazine = Shokubutsu-gaku-zasshi Aims and scope Submit manuscript

Abstract

Observation was made on early ontogeny of vascular cambium in the developing root ofGinkgo biloba L. After completion of root elongation, the vascular meristem gradually acquires cambial characteristics. Strips of the periclinal division of cells in transverse section are observed on the inner side of phloem when the primary xylem and phloem in the stele have been established. The strips are united into a continuous layer between phloem and xylem. In tangenital section, the procambium shows a homogeneous structure, which is initially composed of short cells with transverse end walls and subsequently, of long cells with tapering ends. Then, the procambium is organized into two systems of cells; axial strands of short cells with transverse end walls resulting from the sporadic transverse divisions of long cells, and long cells with tapering ends. Still later, the short cells are divided frequently in a trasverse plane exhibiting one or a few cells in width and several decades of cells in height, while the long cells are elongated. The frequency of transverse divisions of the short cells decreases in subsequent stages. Eventually, the short cells in axial strands are vertically separated from one another by the elongation of neighboring long cells and by the decrease in the frequency of transverse divisions of short cells themselves. Cambial initials occur in two forms; ray initials a few cells in height and one cell in width derived from the short cells, and fusiform initials with tapering ends derived from the long cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barghoorn, E.S. Jr. 1940. Origin and development of the uniseriate ray in the Coniferae. Bull. Torrey Bot. Club67: 303–328.

    Article  Google Scholar 

  • Berlyn, G.P. andJ.P. Miksche. 1976. Botanical Microtechnique. McGraw-Hill, New York.

    Google Scholar 

  • Bond, T.E.T. 1942. Studies on the vegetative growth and anatomy of the tea plant (Camellia thea Link.) with special reference to the phloem. Ann. Bot.6: 607–630.

    Google Scholar 

  • Butterfield, B.G. 1976. The ontogeny of the vascular cambium inHoheria angustifolia Raoul. New Phytol.77: 409–420.

    Article  Google Scholar 

  • Catesson, A.M. 1964. Origine, fonctionnement et variations cytologiques saisonnieres du cambium de l'Acer pseudoplatanus L. Ann. Sci. nat. Bot. (Ser. 12)5: 229–498.

    Google Scholar 

  • — 1974. Cambial cells.In A.W. Robards, ed., Dynamic Aspects of Plant Ultrastructure, pp. 357–390. McGraw-Hill, London.

    Google Scholar 

  • Cumbie, B.G. 1967. Development and structure of the xylem inCanavalia (Leguminosae). Bull. Torrey Bot. Club94: 162–175.

    Article  Google Scholar 

  • — 1984. Origin and development of the vascular cambium inAeschynomene virginica. Bull. Torrey Bot. Club111: 42–50.

    Article  Google Scholar 

  • Digby, J. andP.F. Wareing. 1966. The relationship between endogenous hormone levels in the plant and seasonal aspects of cambial activity. Ann. Bot.30: 607–622.

    CAS  Google Scholar 

  • Enright A.M. andB.G. Cumbie. 1973. Stem anatomy and internode development inPhaseolus vulgaris. Amer. J. Bot.60: 738–747.

    Article  Google Scholar 

  • Esau, K. 1940. Developmental anatomy of the flesh storage organ ofDaucus carota. Hilgardia13: 175–226.

    Google Scholar 

  • — 1943a. Vascular differentiation in the pear roots. Hilgardia15: 299–324.

    Google Scholar 

  • — 1943b. Origin and development of primary vascular tissues in seed plants. Bot. Rev.9: 125–206.

    Article  Google Scholar 

  • — 1965a. Plant Anatomy, 2 ed. John Wiley & Sons, New York.

    Google Scholar 

  • — 1965b. Vascular Differentiation in Plants. Holt, Rinehart & Winston, New York.

    Google Scholar 

  • — 1977. Anatomy of Seed Plants. 2 ed. John Wiley & Sons, New York.

    Google Scholar 

  • Fahn, A., R. Ben-Sasson andT. Sachs. 1972. The relation between the procambium and the cambium.In A.K.M. Ghouse andM. Yunus, ed., Research Trends in Plant Anatomy, pp. 161–170. Tata McGraw-Hill, New Delhi.

    Google Scholar 

  • Fayle, D.C.F. 1968. Radial growth in tree roots. Distribution-timing-anatomy. Univ. Toronto, Fac. For., Tech. Rep. No. 9.

  • Hara, N. and A. Komamine. 1966. Anatomical study on the epicotyl of etiolated seedling ofStizolobium hassjoo. Bot. Mag. Tokyo79: 747–758.

    Google Scholar 

  • Hayward, H.E. andE.M. Long. 1942. The anatomy of the seedling and roots of the Valencia orange. U.S. Dept. Agri. Tech. Bull.786: 1–31.

    Google Scholar 

  • Head, G.C. 1967. Effects of seasonal changes in shoot growth on the amount of root on apple and plum trees. J. Hort. Sci.42: 169–180.

    Google Scholar 

  • Hong, S.S. andW.Y. Soh. 1983. Vascular differentiation in the mature embryo and the seedling ofGinkgo biloba L. Kor. J. Bot.26: 207–216 (in Korean).

    Google Scholar 

  • Johanson, D.A. 1940. Plant Microtechnique. McGraw-Hill, New York.

    Google Scholar 

  • Kang, K.D. and W.Y. Soh. 1988. Origin of the vascular cambium in developing hypocotyl ofGlycine max seedling. Kor. J. Bot. (in press).

  • Larson, P.R. 1976. Procambium vs. cambium and protoxylem vs. metaxylem inPopulus deltoides seedlings. Amer. J. Bot.63: 1332–1348.

    Article  Google Scholar 

  • — 1982. The concept of cambium.In P. Baas, ed., New Perspectives in Wood Anatomy, pp. 85–121. Matinus Nijhoff, London.

    Google Scholar 

  • — andJ.G. Isebrands. 1974. Anatomy of the primary-secondary transition zone in stems ofPopulus deltoides. Wood Sci. Technol.8: 11–26.

    Google Scholar 

  • Loomis, R.S. andJ.G. Torrey. 1964. Chemical control of vascular cambium initiation in isolated radish roots. Proc. Natl. Acad. Sci. USA42: 3–11.

    Article  Google Scholar 

  • Nelson, P.E. andS. Wilhelm. 1957. Some anatomic aspects of the strawberry roots. Hilgardia26: 631–642.

    Google Scholar 

  • Parke, R.V. 1963. Initial vascularization of the vegetative shoot ofAbies concolor. Amer. J. Bot.50: 464–469.

    Article  Google Scholar 

  • Philipson, W.R. andJ.M. Ward. 1965. The ontogeny of the vascular cambium in the stem of seed plants. Biol. Rev.40: 534–479.

    Google Scholar 

  • —,J.M. Ward andB.G. Butterfield. 1971. The Vascular Cambium: Its Development and Activity. Chapman & Hall, London.

    Google Scholar 

  • Purnell, H.M. 1960. Studies of the family Proteaceae I. Anatomy and morphology of the roots of some victorian species. Aust. J. Bot.8: 38–49.

    Article  Google Scholar 

  • Sacher, J.A. 1954. Structure and seasonal activity of the shoot apices ofPinus lambertiana andPinus ponderosa. Amer. J. Bot.41: 749–759.

    Article  Google Scholar 

  • Samantarai, B. andB.K. Nanda. 1979. Evaluation of the role of hormonal factors in secondary growth of dicots. Bot. Mag. Tokyo92: 13–22.

    Article  CAS  Google Scholar 

  • Siebers, A.M. 1971. Differentiation of isolated interfascicular tissue ofRicinus communis L. Acta Bot. Neerl.20: 343–355.

    Google Scholar 

  • Soh, W.Y. 1972. Early ontogeny of vascular cambium I.Ginkgo biloba. Bot. Mag. Tokyo85: 111–124.

    Article  Google Scholar 

  • — 1974a. Early ontogeny of vascular cambium II.Aucuba japonica andWeigela coraeensis. Bot. Mag. Tokyo87: 17–32.

    Article  Google Scholar 

  • — 1974b. Early ontogeny of vascular cambium III.Robinia pseudoacacia andSyringa oblata. Bot. Mag. Tokyo87: 99–112.

    Article  Google Scholar 

  • — 1988. Origin and development of cambial cells.In M. Iqbal, ed., Radial Growth in Plants. Research Studies Press, U.K. (in press).

    Google Scholar 

  • Srivastava, L.M. 1963. Cambium and vascular derivatives ofGinkgo biloba L. J. Arnold Arbor.44: 165–192.

    Google Scholar 

  • Sterling, C. 1946. Growth and vascular development in the shoot apex ofSequoia sempervirens (Lamb.) Endl. III. Cytological aspects of vascularization. Amer. J. Bot.33: 35–45.

    Article  Google Scholar 

  • — 1947. Organization of the shoot ofPseudotsuga taxifolia (Lamb.) Britt. II. Vascularization. Amer. J. Bot.34: 272–280.

    Article  Google Scholar 

  • Sundberg, M.D. 1983. Vascular development in the transition region ofPopulus deltoides Bartr. ex. Marsh. seedlings. Amer. J. Bot.70: 735–743.

    Article  Google Scholar 

  • Swamy, B.G.L. andK.V. Krishnamurthy. 1980. On the origin of vascular cambium in dicotyledonous stems. Proc. Indian Acad. Sci. (Plant Sci.)89: 1–6.

    Article  Google Scholar 

  • Thompson, N.P. andC. Heimsch. 1964. Stem anatomy and aspects of development in tomato. Amer. J. Bot.51: 7–19.

    Article  Google Scholar 

  • Torrey, J.G. 1963. Cellular patterns in developing roots. Symp. Soc. Exp. Biol.17: 285–314.

    PubMed  CAS  Google Scholar 

  • — andL.S. Loomis. 1967. Ontogenetic studies of vascular cambium formation in excised roots ofRaphanus sativus L. Phytomorphology17: 401–409.

    Google Scholar 

  • Weaver, H.L. 1960. Vascularization of the root-hypocotyl-cotyledon axis ofGlycine max (L.) Merrill. Phytomorphology10: 82–86.

    Google Scholar 

  • Webb, D.T. 1982. Importance of the megagametophyte and cotyledons for root growth ofZamia floridana DC. embryos in vitro. Z. Pflanzenphysiol.106: 37–42.

    Google Scholar 

  • Wilcox, H. 1964. Xylem in roots ofPinus resinosa in relation to heterorhizy and growth activity.In M.H. Zimmerman, ed., The Formation of Wood in Forests Trees, pp. 459–478. Academic Press, New York.

    Google Scholar 

  • Winter, C.W. 1932. Vascular system of young plants ofMedicago sativa. Bot. Gaz.94: 152–167.

    Article  Google Scholar 

  • Zamski, E. andA. Azenkot. 1981. Sugarbeet vasculature. I. Cambial development and the three-dimensional structure of the vascular system. Bot. Gaz.142: 334–343.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soh, W.Y., Hong, S.S. & Cho, D.Y. The ontogeny of the vascular cambium inGinkgo biloba roots. Bot. Mag. Tokyo 101, 39–53 (1988). https://doi.org/10.1007/BF02488392

Download citation

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02488392

Key words

Navigation