Skip to main content
Log in

Rate of convergence of Fourier series on the classes of \(\bar \Psi \)-integrals-integrals

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

We introduce the notion of \(\bar \Psi \)-integrals of 2π-periodic summable functions f, f ε L, on the basis of which the space L is decomposed into subsets (classes) \(L^{\bar \Psi } \). We obtain integral representations of deviations of the trigonometric polynomials U n(f;x;Λ) generated by a given Λ-method for summing the Fourier series of functions \(f{\text{ }}\varepsilon {\text{ }}L^{\bar \Psi } \). On the basis of these representations, the rate of convergence of the Fourier series is studied for functions belonging to the sets \(L^{\bar \Psi } \) in uniform and integral metrics. Within the framework of this approach, we find, in particular, asymptotic equalities for upper bounds of deviations of the Fourier sums on the sets \(L^{\bar \Psi } \), which give solutions of the Kolmogorov-Nikol'skii problem. We also obtain an analog of the well-known Lebesgue inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Stepanets, “Classification of periodic functions and the rate of convergence of their Fourier series”, Izv. Akad. Nauk SSSR, Ser. Mat., 50, No. 1, 101–136 (1986).

    MathSciNet  Google Scholar 

  2. A. I. Stepanets, “Classes of periodic functions and approximation of their elements by Fourier sums,” Dokl. Akad. Nauk SSSR, 277, No. 5, 1074–1077 (1984).

    MathSciNet  Google Scholar 

  3. A. I. Stepanets, Classification and Approximation of Periodic Functions [in Russian], Naukova Dumka, Kiev (1987).

    MATH  Google Scholar 

  4. A. I. Stepanets, “To the Lebesgue inequality on the classes of (ψ, β)-differentiable functions,” Ukr. Mat. Zh., 41, No. 5, 449–510 (1089).

    Google Scholar 

  5. R. Salem, “Essais sur les séries trigonometriques,” Actual. Sci. Industr., No. 862 (1940).

  6. N. K. Bari, Trigonometric Series [in Russian], Fizmatgiz, Moscow (1961).

    Google Scholar 

  7. A. Zygmund, Trigonometric Series [in Russian translation], Vol. 2, Mir, Moscow (1965).

    MATH  Google Scholar 

  8. B. Nagy, Sur une classe générale de procedes de sommation pour les séries de Fourier,” Hung. Acta Math., 1, No. 3, 14–62 (1948).

    Google Scholar 

  9. S. A. Telyakovskii, “On norms of trigonometric polynomials and approximation of differentiable functions by linear means of their Fourier series,” Tr. Mat. Inst. Akad. Nauk SSSR, 2, 61–97 (1961).

    Google Scholar 

  10. A. I. Stepanets, “Classes of functions defined on the real axis and their approximation by entire functions. I,” Ukr. Mat. Zh., 42, No. 1, 102–112 (1990).

    Article  MathSciNet  Google Scholar 

  11. A. I. Stepanets, “Classes of functions defined on the real axis and their approximation by entire functions. II,” Ukr. Mat. Zh., 42, No. 2, 210–220 (1990).

    Article  MathSciNet  Google Scholar 

  12. A. N. Kolmogorov, “Zur Crossenordnung des Restliedes Fouriershen Reihen differenzierbaren Functionen,” Ann. Math., 36, 521–526 (1935).

    Article  MathSciNet  Google Scholar 

  13. S. M. Nikol'skii, “Approximation of periodic functions by trigonometric polynomials,” Tr. Mat. Inst. Akad. Nauk SSSR, 15, 1–76 (1945).

    Google Scholar 

  14. S. M. Nikol'skii, “On linear methods of summation of Fourier series,” Izv. Akad. Nauk SSSR, Ser. Mat., 12, No. 3, 259–278 (1948).

    Google Scholar 

  15. A. V. Efimov, “Approximation of continuous periodic functions by Fourier sums,” Izv. Akad. Nauk SSSR, Ser. Mat., 24, No. 2, 243–296 (1960).

    MATH  MathSciNet  Google Scholar 

  16. A. I. Stepanets, Uniform Approximations by Trigonometric Polynomials [in Russian], Naukova Dumka, Kiev (1981).

    Google Scholar 

  17. N. I. Akhiezer, Elements of the Theory of Elliptic Functions [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  18. A. I. Stepanets, “Deviations of Fourier sums on classes of entire functions,” Ukr. Mat. Zh., 41, No. 6, 783–789 (1989).

    Article  MathSciNet  Google Scholar 

  19. S. M. Nikol'skii, “Approximation of functions by trigonometric polynomials in mean,” Izv. Akad. Nauk SSSR, Ser. Mat., 10, No. 3, 207–256 (1946).

    Google Scholar 

  20. V. I. Berdyshev, “Approximation of periodic functions by Fourier series in mean,” Izv. Akad. Nauk SSSR, Ser. Mat., 29, No. 3, 505–526 (1965).

    MATH  MathSciNet  Google Scholar 

  21. H. Lebesgue, “Sur la representation trigonometrique approchée des function satisfaisant a une condition de Lipschitz,” Bull. Math. France, 38, 184–210 (1910).

    MATH  MathSciNet  Google Scholar 

  22. H. B. Dwight, Tables of Integrals, Macmillan, New York (1961).

    Google Scholar 

  23. S. A. Telyakovskii, “On approximation of functions with high smoothness by Fourier sums,” Ukr. Mat. Zh., 41, No. 4, 510–518 (1989).

    Article  MathSciNet  Google Scholar 

Download references

Authors

Additional information

Institute of Mathematics, Ukrainian Academy of Sciences, Kiev. Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 49, No. 8, pp. 1069–1113, August, 1997.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stepanets, A.I. Rate of convergence of Fourier series on the classes of \(\bar \Psi \)-integrals-integrals. Ukr Math J 49, 1201–1251 (1997). https://doi.org/10.1007/BF02487549

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02487549

Keywords

Navigation