Skip to main content
Log in

Mechanics of relaxing SiGe islands on a viscous glass

  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

A process has been developed recently to fabricate a structure comprising, from top to bottom, a SiGe thin film, a glass layer, and a Si wafer. The SiGe film is a perfect crystal, and is under biaxial compression. The SiGe film is patterned into islands. On annealing, the glass flows and the islands relax. The resulting strain-free islands are used as substrates, to grow epitaxial optoelectronic devices. This article describes a series of studies on the annealing process, combining experiment and theory. A small island relaxes by expansion, starting at the edges and diffusing to the center. A large island wrinkles before the expansion reaches the center. After some time, the wrinkles either disappear, or cause the island to fracture. We model the island as an elastic plate, and the glass layer as a viscous liquid. The strains in the islands are measured by X-ray diffraction and Raman spectroscopy, and the wrinkle amplitudes by atomic force microscope. The data are compared with the theoretical predictions. We determine the conditions under which the islands relax by expansion without significant wrinking, and demonstrate that a cap layer suppresses wrinkles, relaxing a large island crack-free.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Freund LB. The mechanics of electronic materials.Int J Solids Structures, 2000, 37(1–2): 185–196

    Article  MATH  MathSciNet  Google Scholar 

  2. Suo Z. Evolving material structures of small feature sizes.Int J Solids Structures, 2000, 37(1–2): 367–378

    Article  MATH  Google Scholar 

  3. Gao H, Nix WD. Surface roughening of heteroepitaxial thin films.Ann Rev Mater Sci, 1999, 29: 173–209

    Article  Google Scholar 

  4. Bruner K. Si/Ge nanostructures.Rep Porg Phys, 2002, 65(1): 27–72

    Article  Google Scholar 

  5. Tong QY, Gosele U. Semiconductor Wafer Bonding: Science and Technology. New York: Wiley, 1998

    Google Scholar 

  6. Yu H, Suo Z. A model of wafer bonding by elastic accommodation.J Mech Phys Solids, 1998, 46(5): 829–844

    Article  MATH  Google Scholar 

  7. Li M, Wang J, Zhuang L, et al. Fabrication of circular optical structures with a 20 nm minimum feature size using nanoimprint lithography.Appl Phys Lett, 2000, 76(6): 673–675

    Article  Google Scholar 

  8. Kim C, Burrows PE, Forrest SR. Micropatterning of organic electronic devices by cold welding.Science, 2000, 288(5467): 831–833

    Article  Google Scholar 

  9. Josell D, Wheeler D, Huber WH, et al. Superconformal electrodeposition in submicron features.Phys Rev Lett, 2001, 87(1): 016102

    Article  Google Scholar 

  10. Liang J, Suo Z. Stable island arrays by height-constrained Stranski-Krastanov growth.Applied Physics Letters, 2001, 79(20): 3251–3252

    Article  Google Scholar 

  11. Suo Z, Lu W. Forces that drive self-assembly on solid surfaces.Journal of Nanoparticles Research, 2000, 2(4): 333–344

    Article  Google Scholar 

  12. Chou SY, Zhuang L, Gao L. Lithographically indeced self-construction of polymer microstructures for resistless patterning.Appl Phys Lett, 1999, 75(7): 1004–1006

    Article  Google Scholar 

  13. Erlebacher J, Aziz MJ, Chason E, et al. Nonlinear amplitude evolution during spontaneous patterning of ion-bombarded Si(001).J Vac Sci Technol, A, 2000, 18(1): 115–120

    Article  Google Scholar 

  14. Ismail K, Arafa M, Saenger KL, et al. Extremely high electron mobility in Si/SiGe modulationdoped heterostructures.Appl Phys Lett, 1995, 66(9): 1077–1079

    Article  Google Scholar 

  15. Xie YH, Monroe D, Fitzgerald EA, et al. Very high mobility two-dimensional hole gas in Si/Ge x Si1−x /Ge structures grown by molecular beam epitaxy.Appl Phys Lett, 1993, 63(16): 2263–2265

    Article  Google Scholar 

  16. Mooney PM, Chu JO. SiGe technology: heteroepitaxy and high-speed microelectronics.Annu Rev Mater Sci, 2000, 30: 335–362

    Article  Google Scholar 

  17. Fitzgerald EA, Xie YH, Monroe D, et al. Relaxed Ge x Si1−x structures for III-V integration with Si and high mobility two-dimensional electron gases in Si.J Vac Sci Technol, B, 1992 10(4): 1807–1819

    Article  Google Scholar 

  18. Fitzgerald EA, Xie YH, Green ML, et al. Totally relaxed Ge x Si1−x layers with low threading dislocation densities grown on Si substrates.Appl Phys Lett, 1991, 59(7): 811–813

    Article  Google Scholar 

  19. Fitzgerald EA. GeSi/Si nanostrcutures.Annu Rev Mater Sci, 1995, 25: 417–454

    Article  Google Scholar 

  20. Lo YH. New approach to grow pseudomorphic structures over the critical thickness.Appl Phys Lett, 1991, 59(18): 2311–2313

    Article  Google Scholar 

  21. Powell AR, Iyer SS, LeGoues FK. New approach to the growth of low dislocation relaxed SiGe material.Appl Phys Lett, 1994, 64(14): 1856–1858

    Article  Google Scholar 

  22. Yang Z, Alperin J, Wang WI, et al. In situ relaxed Si1−x Ge x epitaxial layers with low threading dislocation densities grown on compliant Si-on-insulator substrates.J Vac Sci Technol, B, 1998, 16(3): 1489–1491

    Article  Google Scholar 

  23. Huang FY, Chu MA, Tanner MO, et al. High-quality strain-relaxed SiGe alloy grown on implanted silicon-on-insulator substrate.Appl Phys Lett, 2000, 76(19): 2680–2682

    Article  Google Scholar 

  24. Vanhollebeke K, Moerman I, Van Daele P, et al. Compliant substrate technology: investigation of mismatched materials for opto-electronic applications.Progress in Crystal Growth and Characterization of Materials, 2000. 1–55

  25. Hobart KD, Kub FJ, Fatemi M, et al. Compliant substrates: a comparative study of the relaxation mechanisms of strained films bonded to high and low viscosity oxides.J Electronic Materials, 2000, 29(7): 897–900

    Google Scholar 

  26. Movan PD, Kuech TF. Kinetics of strain relaxation in semiconductor films grown on borosilicate glass-bonded substrates.J Electronic Materials, 2001, 30(7): 802–806

    Google Scholar 

  27. Huang R, Yin H, Liang J, et al. Relaxation of a strained elastic film on a viscous layer.Mater Res Soc Symp Proc, 2001, 695: 115–120

    Google Scholar 

  28. Sridhar N, Srolovitz DJ, Suo Z. Kinetics of buckling of a compressed film on a viscous substrate.Appl Phys Lett, 2001, 78(17): 2482–2484

    Article  Google Scholar 

  29. Huang R, Suo Z. Instability of a compressed elastic film on a viscous layer.Int J Solids Struct, 2002, 39(7): 1791–1802

    Article  MATH  Google Scholar 

  30. Huang R, Suo Z. Wrinkling of a compressed elastic film on a viscous layer.J Appl Phys, 2002, 91(3): 1135–1142

    Article  Google Scholar 

  31. Sridhar N, Srolovitz DJ, Cox BN. Buckling and post-buckling kinetics of compressed thin films on viscous substrates.Acta Mater., 2002, 50 (10): 2547–2557

    Article  Google Scholar 

  32. Liang J, Huang R, Yin H, et al. Strain relaxation of Sige islands on compliant oxide.J Acta Materialia, 2002, 50(11): 2933–2944

    Article  Google Scholar 

  33. Yin H, Huang R, Hobart KD, et al. Strain relaxation of SiGe islands on compliant oxide.J Appl Phys, 2002, 91(12): 9716–9722

    Article  Google Scholar 

  34. Timoshenko S, Woinowsky-Krieger S. Theory of Plates and Shells, 2nd edition. New York: McGraw-Hill, Inc, 1987

    MATH  Google Scholar 

  35. Landau D, Lifshitz EM. Theory of Elasticity. London: Pergamon Press, 1959

    MATH  Google Scholar 

  36. Bachelor GK. An Introduction to Fluid Dynamics. Cambridge, Cambridge University Press, 1967

    Google Scholar 

  37. Elsasser WM. Convection and stress propagation in the upper mantle. In: Runcorn WK ed. The Application of Modern Physics to the Earth and Planetary Interiors, New York: Weily, 1969. 223–246

    Google Scholar 

  38. Bott MH, Dean DS. Stress diffusion from plate boundaries.Nature, 1973, 243: 339–341

    Article  Google Scholar 

  39. Lehner FK, Li VC, Rice JR. Stress diffusion along rupturing plate boundaries.J Geophysical Research, 1981, 86(B7): 6155–6169

    Google Scholar 

  40. Suo Z. Wrinkling of the oxide scale on an aluminum-containing alloy at high temperatures.J Mech Phys Solids, 1995, 43(6): 829–846

    Article  MATH  Google Scholar 

  41. Martin SJ, Godschalx JP, Mills ME, et al. Development of a low-dielectric-constant polymer for the fabrication of integrated circuit interconnect.Advanced Materials, 2000, 12(23): 1769–1778

    Article  Google Scholar 

  42. Bowden N, Brittan S, Evans AG, et al. Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer.Nature, 1998, 393(6681): 146–149

    Article  Google Scholar 

  43. Hutchinson JW, Suo Z. Mixed-mode cracking in layered materials.Advances in Applied Mechanics, 1991, 29: 63–191

    Article  Google Scholar 

  44. Reynolds O. On the theory of lubrication and its application to Mr. Beauchamp Tower's experiments, including an experimental determination of the viscosity of olive oil.Phil Trans Roy Soc, London, 1886, 177: 157–234

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The project supported by NSF (CMS-9820713), DARPA (N66001-00-1-8957), ARO (DAA655-98-1-0270), and New Jersey Science and Technology Commission

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, R., Yin, H., Liang, J. et al. Mechanics of relaxing SiGe islands on a viscous glass. Acta Mech Sinica 18, 441–456 (2002). https://doi.org/10.1007/BF02486570

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02486570

Key Words

Navigation