Skip to main content
Log in

Crack development in concrete structures due to imposed strains—Part I: Modelling

  • Scientific Reports
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

In the present paper, a technique for the modelling of crack development in reinforced concrete structures exposed to imposed deformations is described. In a second paper, parametric studies are performed for a wall fully restrained at the base. The objective of this research is to improve the control of cracking in engineering design.

A two-dimensional Finite Element model with fournode elements is used to simulate concrete. Closing forces in cracks are modelled with spring elements. The spring stiffness is estimated from bond stress—slip relations for reinforcement and tension softening of concrete. Yield of reinforcement is also included in the model. Temperature change is used as load and the calculations are performed stepwise with opening of nodes and implementation of spring elements.

It is shown that tensile softening of concrete can be neglected but multiple cracking must be considered in the calculations. The progression of cracking in the structure is simulated in the analysis. Results are given in terms of development of crack width with increasing temperature load. The crack widths approach an upper limit for large temperature loading. The proposed model can also be adapted to other structures and restraints.

Résumé

Cette publication présente une modélisation du développement des fissures dans les constructions en béton armé soumis à des déformations. Dans une deuxième publication, des études paramétriques sont réalisées sur un mur encastré à la base. L'objectif de ce travail est de permettre à l'ingénieur de mieux contrôler le développement des fissures.

Un modèle bi-dimensionnel aux éléments finis à quatre nœuds est utilisé pour simuler le comportement du béton. Les efforts internes de fermeture des fissures sont modélisés par des éléments de raideur. Ceux-ci sont déterminés par la relation contrainte d'adhérence-glissement pour l'armature et pour le ramollissement en traction du béton. Le cisaillement de l'armature est également inclus dans le modèle. Un changement de température simule le chargement, et les calculs sont réalisés par étapes, en contrôlant l'écartement des nœuds et l'ajout d'éléments de raideur.

Il est démontré que le ramollissement en traction du béton peut être négligé, mais l'existence de multiples fissures doit être prise en compte dans l'analyse. La progression des fissures dans la construction est simulée dans l'analyse. Les résultats présentés illustrent le développement des fissures en fonction de l'augmentation de la température. La largeur des fissures atteint une valeur maximale pour des températures élevées. Le modèle proposé peut également être adapté à d'autres structures et d'autres modes de contrainte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jaccoud, J. P., ‘Minimum reinforcement for control of cracking in concrete structures’, Thèse No 666. (École Polytechnique Fédérale de Lausanne, 1987) (only available in French).

  2. Favre, R., (Chairman), ‘Design manual on cracking and deformations’, Bulletin d'information No. 158-E (CEB, Lausanne, 1985).

    Google Scholar 

  3. Reinhardt, H. W., ‘Imposed deformation and cracking’ IABSE Report62 (Zurich, 1991). 101–110.

    Google Scholar 

  4. Nagy, A., ‘Cracking in reinforced concrete structures due to imposed deformations’, Doctoral Thesis, TVBK-1012, (Lund Institute of Technology, Sweden, 1997).

    Google Scholar 

  5. ACI 207. 2R-73, ‘Effect of restraint volume change and reinforcement on cracking of massive concrete’, (American Concrete Institute, 1973).

  6. Rostásy, F. S. and Henning, W., ‘Restraint in reinforced walls on foundations’,Beton- und Stahlbetonbau 84 (8) (9) (1989) 208–214, 232–237 (only available in German).

    Google Scholar 

  7. Kheder, G. F., Al-Rawi, R. S. and Al-Dhahi, J. K., ‘A study of the behaviour of volume change cracking in base restrained çoncrete walls’,Mater. Struct. 27 (171) (1994) 383–392.

    Article  Google Scholar 

  8. Iványi, G., ‘Remarks to minimum, reinforcement area in walls’,Beton- und Stahlbetonbau 90 (11) (1995) 283–289 (only available in German).

    Google Scholar 

  9. Stoffers, H., ‘Cracking due to shrinkage and temperature variation in walls’,Heron 23 (3) (1978) 5–68.

    Google Scholar 

  10. Harrison, T. A., ‘Early-age thermal, crack control in concrete’, CIRIA Report 91, Revised edition. (London, 1992).

  11. Karihaloo, L. B., ‘Fracture mechanics and structural concrete’, (Longman Scientific & Technical, England, 1995).

    Google Scholar 

  12. Magnusson, J., ‘Bond and Anchorage of Deformed Bars in High-Strength Concrete’, Licentiate Thesis, Publication 97:1, (Chalmers University of Technology, Sweden, 1997).

    Google Scholar 

  13. Bigaj, A. and den Uijl, J., ‘Tension stiffening Simulation with Confinement Based Bond Model’, in ‘Progress in concrete research’, (Delft University of Technology, Netherlands, 1997) 77–86.

    Google Scholar 

  14. ‘Concrete Manual, Material, 2nd edition’, (Svensk Byggtjänst, Stockholm, 1994) (only available in Swedish).

  15. Lundgren, K., ‘Three-dimensional modelling of bood in reinforced concrete’, Doctoral Thesis, Publication 99:1. (Chalmers University of Technology, Sweden, 1999).

    Google Scholar 

  16. Falkner, H., (Chairman), ‘Thermal effects in concrete structures’, Bulletin d'information No. 167. (CEB, Lausanne, 1985).

    Google Scholar 

  17. Emborg, M., ‘Thermal stresses in concrete structures at early ages’, Doctoral Thesis, 1989:73 D. (Luleå University of Technology, Sweden, 1990).

    Google Scholar 

  18. Pettersson, D., ‘Restraint stresses due to uniform thermal action in walls and floor of concrete on a frictional surface’, Report TVBK-7051 (Lund Institute of Technology, Sweden, 1996).

    Google Scholar 

  19. Pettersson, D., ‘Stresses in Concrete Structures from Ground Restraint’, Licentiate Thesis, Report TVBK-1014 (Lund Institute of Technology, Sweden, 1998).

    Google Scholar 

  20. Volkersen, O., ‘Distribution of forces in rivet joints under tensile loading’,Luftfahrtforschung 35 (1938) 41–47 (only available in German).

    Google Scholar 

  21. ‘ANSYS User's Manual Revision 5.4’, (Canonsburg, USA, 1997).

  22. Hillerborg, A., ‘Application of fracture mechanics to concrete’, Report TVBM-3030 (Lund Institute of Technology, Sweden, 1988).

    Google Scholar 

  23. Thelandersson, S., Alemo, J. and Nagy, A., ‘Cracking of concrete structures due to imposed strains with regard to design of reinforcement’,Mater. Struct.,31 (1998) 442–450.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Editorial Note Prof. Sven Thelandersson is a RILEM Senior Member.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pettersson, D., Thelandersson, S. Crack development in concrete structures due to imposed strains—Part I: Modelling. Mat. Struct. 34, 7–13 (2001). https://doi.org/10.1007/BF02482194

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02482194

Keywords

Navigation