Skip to main content
Log in

Towards a prediction of superplasticized concrete rheology

  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The rheology of concrete is influenced by water content, the amount, size and size distribution of all the solid components as well as by the dispersion of the finer particles through the addition of superplasticizers. In addition, the rheological behariour over time ovolves as a result of cement hydration. Consequently the a-priori prediction of concrete rheology is a complex task.

In this article, models that have been and are being developed to achieve this task are discussed. The key role of the degree of dispersion will be underlined. A treatment of interparticle forces and a yield stress model integrating these will be presented. Such work is necessary to integrate the dispersion efficiency of superplasticizers based on their dosage and molelar, structures into existing models for predicting concrete rheology.

Résumé

La rhéologie du béton est influencée par la teneur en eau, la quantité, la taille et la distribution de taille de tous les matériaux granulaires ainsi que du degré de dispersion qui peut être obtenu par l'ajout de superplastifiant. De plus, le comportement rhéologique de ce matériau évolue dans le temps à cause de l'hydration du ciment. Il en résulte que la prédiction de la rhéologie du béton est particulièrement complexe.

Dans cet article, des modèles existant et en cours de développment dont le but est précisément d'atteindre cet objectif sont discutés L'importance du degré de dispersion sera soulignée. Un traitement des forces interparticulaires et de leur lien au seuil d'écoulement est présenté. Le but d'un tel travail est de pouvoir en fin de compte inclure l'effet du dosage et de la structure moléculaire de superplastifiants dans les modèles existants pour la prédiction de la rhéologie du béton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. De Larrard, F. and Sedran, T., ‘Mixture-proportioning of high-performance concrete’,Cem. Concr. Res. 32 (2002) 1699–1704.

    Article  Google Scholar 

  2. Ambroise, J., Chabannet, M. and Péra, J., ‘Basic properties and effects of starch on self-levelling concrete’, Proceedings of the RILEM international symposium on the role of admixtures in high performance concrete (Ed. J. G. Cabrera and R. Rivera Villarreal), RILEM Publ., France, 357–376.

  3. Wallevik, O., ‘Rheology of cement suspensions’, (The Icelandic Building Research Institute, 112 Keldnaholt, Iceland, 2002).

    Google Scholar 

  4. De Larrard, F., ‘Concrete mixture proportioning’ (E & FN Spon, London, 1999).

    Google Scholar 

  5. Van Damme, H. Mansoutre, S., Colombet, P., Lesaffre, C. and Picart, D., ‘Pastese: Lubricate and cohesive granular media’,C.R. Physique 3 (2002) 229–238.

    Article  Google Scholar 

  6. Fernon, V., Vichot, A., Le Goanvic, N., Colombet, P., Corazza, F. and Costa, U., ‘Interaction between portland cement hydrates and polynaphtalene sulfonates’ in Proc. 5th Canmet/ACI Int. Conf. on Superplasticizers and Other Chemical Admixtures in Concrete (editor: Malhotra V.M.), (American Concrete Institute, Framington Hills, SP-173, 1997) 225–248.

    Google Scholar 

  7. Flatt, R.J. and Houst, Y.F., ‘A simplified view on chemical effects perturbing the action of superplasticizers’,Cem. Concr. Res. 31 (8) (2001) 1169–1176.

    Article  Google Scholar 

  8. Flatt, R.J., ‘Interparticle, Forces in Cement Suspensions’, PhD Thesis 2040, 1999, EPEL, Switzerland.

    Google Scholar 

  9. Schober, I. and Maeder, U., ‘Compatibility of polycarboxylate superplasticizers with cement and cementitious blends’, in Proc. 7th Canmet/ACI Int. Conf. on Superplasticizers and Other Chemical Admixtures in Concrete, (editor: Malhotra, V.M.), (American Concrete Institute, Framington Hills, SP-217, 2003) 453–48.

    Google Scholar 

  10. Martys, N.S. and Mountain, R.D., ‘Velocity Verlet algorithm, for dissipative-particle-dynamics-based models of suspensions’,Phys. Rev. E. 59 (1999) 3733–3736.

    Article  Google Scholar 

  11. Geiker, M.R., Brandl, M., Thrane, L.N. and Nielsen, L.F., ‘On the effect of coarse aggregate fraction and shape on the rheological properties of self-compacting concrete’,Cement and Concrete Aggreaties 24 (1) 3–6.

  12. Ferraris, C.F. and Martys, N.S., ‘Relating fresh concrete viscosity measurements from different rheometer’,J. Res. Natl. Inst. Stand. Technol. 108 (2003).

  13. Ferraris, C. and de Larrard, F., ‘Testing and modelling of fresh concrete rheology’, NISTIR 6094, National Institute of Standards and Technology, February 1998.

  14. Tattersall, G.H. and Banfill, P.F., ‘The rheology of fresh concrete’ (Pitrnan advanced publishing program, London, 1983).

    Google Scholar 

  15. Schowalter W.R. and Christensen, G., ‘Toward a rationalization of the slump test for fresh concrete: Comparisons of calculations and experiments’,J. Rheol. 42, (4) (1998) 865–870.

    Article  Google Scholar 

  16. Davidson, M.R., Khan, N.H. and Yeow, Y.L., ‘Collapse of a cyclinder of Bingham fluid’, ANZIAM J. 42 (E) pp. C499-C517, 2000, in Proceedings of the 1999 International Conference on Computational Techniques and Applications (CTAC-99).

    MathSciNet  Google Scholar 

  17. Flatt, R.J. and Bowen, P., ‘Electrostatic, repulsion between particles in cement suspensions domain of validity of linearized Poisson-Boltzmann equation for non-ideal electrolytes’,Cem. Concr. Res. 2253 (2002) 1–11.

    Google Scholar 

  18. Flatt, R.J., ‘Dispersion forces in cement suspensions’,Cem. Concr. Res. 34 (3) (2004) 399–408.

    Article  Google Scholar 

  19. Nachbaur, L., Mutin, J.C., Nonat, A. and Choplin, L., ‘Dynamic mode rheology of cement and tricalcium silicate pastes from mixing to setting’,Cem. Concr. Res. 31 (2001) 183–192.

    Article  Google Scholar 

  20. Ramachandran, V.S., Malhotra, V.M., Jolicoeur, C. and Spiratos, N., ‘Superplasticizers: properties and applications in concrete’, (CANMET Publication MTL 97-14 (TR), Ottwa, Canada, 1998).

  21. Flatt, R.J., ‘Polymeric Dispersants in Concrete’, in ‘Polymers in Particulate Systems: Properties and Applications’, Eds: Hackley, V.A., Somasundaran P., Lewis J.A., (Marcel Dekker, New York, 2001) 247–294.

    Google Scholar 

  22. Banfill, P.F.G., ‘A discussion of the paperRheological properties of cement mixes’ by M. Daimon and D.M. Roy,Cem. Concr. Res. 9 (1979) 795–798.

    Article  Google Scholar 

  23. Daimon, M. and Roy, D.M., ‘Rheological properties of cement mixes I’,Cem. Concr. Res. 8 (1978) 753–764.

    Article  Google Scholar 

  24. Gartner, E.M., Koyata, H. and Scheiner, P., ‘Influence of Aqueous Phase Composition on the Zeta Pontential of Cement in the presence of Water- Reducing Admixtures’, Ceramic Transactions (American Ceramic Society),40, (1994) 131–140.

    Google Scholar 

  25. Sakai, E. and Daimon M., ‘Mechanisms of superplastification’, in ‘Materials science of concrete IV’, Ed.: Skalny, J.P. and Mindess, S. (The American Ceramic Society, Westerville, OH, USA, 1995) 91–111.

    Google Scholar 

  26. Yoshioka, K., Sakai, E. and Daimon, M., ‘Role of steric hindrance in the performance of superplasticizers in concreté’,J. Am. Ceram Soc. (1997) 2667–2671.

  27. Pedersen, H.G. and Bergström, L., ‘Forces between zirconia surfaces in poly(acrylic acid) solutions’,J. Am. Ceram. Soc.,82 (5) (1999) 137–1145.

    Google Scholar 

  28. Van Damme, H., ‘Colloidal chemo-mechanics of cement hydrates and smectice clays: cohesion, vs. Swelling’, in ‘Encyclopedia of surface and Colloidal Science’, (Marcel Dekker Inc, New York, 2002) 1087–1103.

    Google Scholar 

  29. Prieve, D.C. and Bevan, M.A., ‘Effect of physisorbed polymers on the interaction on latex particles and their dispersion stability’, in ‘Polymers in Particulate Systems: Properties and Applications’, Eds: Hackley, V.A., Somasundaran, P., and Lewis, J.A. (Marcel Dekker, New York, 2001) 1–26.

    Google Scholar 

  30. Yamada, K. and Hanehara, S., ‘Interaction mechanism of cement and superplasticizers—The roles of polymer adsorption and ionic conditions of aqueous phase’,Concrete Science and Engineering 3 (2001) 135–145.

    Google Scholar 

  31. Flatt, R.J., Houst, Y.F., Bowen, P., Hofmann, H., Widmer, J., Sulser, U., Maeder, U. and Bürge, T.A., ‘Interaction of superplasticizers with model poweders in a highly alkaline medium’ inProc. 5 th Canmet/ACI Int. Conf. on Superplasticizers and Other Chemical Admixtures in Concrete, Ed.: Malhotra V.M., (American Concrete Institute, Farmington Hills, Mi, USA, 1997, SP-173) 743–762.

    Google Scholar 

  32. Zhou, Z., Boger, D.V., Scales, P.J. and Healey, T.W., ‘Shear and compressional rheology principles in ceramic processing’ in ‘Polymers in Particulate Systems: Properties and Applications’, Eds.: Hackley, V.A., Somasundaran, P. and Lewis, J.A., (Marcel Dekker, New York, 2001) 157–195.

    Google Scholar 

  33. Flatt, R.J. and Bowen, P., Work in progress (2003).

  34. Suzuki M. and Oshima T, ‘Estimation of the coordination number in a Multi-Component Mixture of Spheres’, Powder Technology35 (1983) 159–166.

    Article  Google Scholar 

  35. Flatt, R.J., Ferrais, C., Martys, N. and Banfill, P., Workin in progres (2003).

  36. Banfill, P.F.G., personal communication (2003).

  37. Nolan, G.T. and Kavanagh, P.E., ‘The size distribution of interstices in random packings of spheres’,Powder Technology 78 (1994) 231–238.

    Article  Google Scholar 

  38. Bowen, P., personal communication (2003).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Editorial Note Dr. Robert J. Flatt presented a lecture of this paper at the 2003 RILEM Annual Meeting in Madrid, as he was awarded the 2003 Robert L'Hermite Medal in recognition of his work on cement and concrete technology. The L'Hermite Award Committee for 2003 decided to recommend the prize to Dr. Flatt since he has demonstrated original approach and independence for fundamental studies of issues which are relevant to cement and concrete technology. In particular he should be noted for his contributions to the basic understanding of the mechanisms of dispersants in concretes. His scientific work added valuable insight into chemical effect dispersants and their impact on, physical characteristics of particle interactions and rheology. His studies are highly valuable from a basic point of view and are bound to have practical implication. Dr. Flatt is a RILEM Senior Member.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flatt, R.J. Towards a prediction of superplasticized concrete rheology. Mat. Struct. 37, 289–300 (2004). https://doi.org/10.1007/BF02481674

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02481674

Keywords

Navigation