Skip to main content
Log in

Influence of mix proportions and curing conditions on tensile splitting strength of high strength concretes

  • Scientific Reports
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The effect of the composition of high strength concretes with low water to binder ratio and silica fume on the development of splitting tensile strength was studied. A statistical approach was employed to develop formulation which could adequately describe the relations between splitting tensile strength and the concrete composition, when cured in two different regimes: water curing at 20°C and sealed curing at 30°C. Autogenous shrinkage was induced in the second type of curing but was largely eliminated in the first one. The relations were presented as nomograms which could be used as a basis for mix design.

The correlation between tensile splitting strength and compressive strength could not be described in terms of a simple linear relation with a characteristic constant. For the range of variables studied, the ratio between tensile and compressive strength varied over a large range of 0.08 to 0.12. As a result, the relations developed here for tensile strength are quite different in nature than those for compressive strength in a previous study. Analysis of the data suggest that tensile strength is sensitive to effects which induce autogenous shrinkage to a much greater extent than compressive strength. It is proposed that this may be the main reason for the different trends observed for the relations between the composition of the low water/binder ratio concretes and their compressive and tensile strength.

Résumé

On a étudié l'effet de la composition des bétons de haute résistance de faible rapport eau/liant à base de fumée de silice sur le développement de la résistance à la traction par fendage.

Une approche statistique a été utilisée pour développer une formule pouvant décrire les relations entre la résistance en fendage et la composition du béton, pour deux cures du béton: conservation dans l'eau à 20°C et conservation étanche à 30°C.

Un retrait intrinsèque se manifeste dans le second type de cure mais a été largement éliminé dans le premier. Les relations présentées en forme de nomogrammes peuvent servir de base à une étude de formulation du béton.

La corrélation entre la résistance au fendage et la résistance à la compression ne peut être représentée par une fonction linéaire.

Pour la plage des variables étudiées, le rapport entre la résistance au fendage et la résistance à la compression varie dans une plage étendue allant de 0,08 à 0,12. Il résulte que les relations développées ici pour la résistance au fendage sont différentes en nature de celles développées dans une précédente étude pour la résistance en compression. L'analyse des données suggère que la résistance en fendage est sensible aux effets qui induisent un retrait intrinsèque bien plus que la résistance à la compression. Les auteurs suggèrent qu'il s'agit là de la principale raison des différentes tendances observées entre la composition des bétons à faible rapport eau/liant et leur résistance en compression et en traction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Neville, A. and Aïtcin, P.-C., ‘High performance concrete—An overview’,Mater. Struct.,31 (Mar. 1998), 111–117.

    Google Scholar 

  2. Aïtcin, P.-C., ‘High Performance Concrete’, (E & FN Spon, 1998).

  3. Jerome, M. R., ‘Tensile strength of concrete’,ACI Journal Proceedings,81 (2), (Mar.–Apr. 1984) 158–165.

    Google Scholar 

  4. Carrasquillo, R. L., Nilson, A. H. and Slate, F. O., ‘Properties of high strength concrete subjected to short-term loads,Ibid.,78 (3) (May–June 1981) 171–178.

    Google Scholar 

  5. Iravani, S., ‘Mechanical properties of high-performance concrete’,ACI Materials Journal,93 (5) (Sept.–Oct. 1996) 416–426.

    Google Scholar 

  6. Khan, A. A., Cook, W. D. and Mitchell, D., ‘Tensile strength of low, medium, and high strength concrete at early ages’,Ibid (5) (Sept.–Oct. 1996) 487–493.

    Google Scholar 

  7. ACI Committee 363, ‘State-of-the-Art Report on High Strength Concrete’, ACI Manual of Concrete Practice, Part 3, 1994, 54 pp.

  8. Comité Euro-International du Béton, ‘CEB-FIP Model Code 1990’ (Thomas Telford, London, 1993).

    Google Scholar 

  9. Grieb, W. E. and Werner, G., ‘Comparison of splitting tensile strength of concrete with flexural and compressive strengths’,Public Roads 32 (5) (Dec. 1962) 11–15.

    Google Scholar 

  10. Persson, B., ‘Hydration and strength of high performance concrete’,Advanced Cement Based Materials 3 (3–4) (Apr.–May, 1996) 107–123.

    Google Scholar 

  11. Wee, T. H., Matsunaga, Y., Watanabe, Y. and Sakai, E., ‘Microstructure and strength properties of high strength concretes containing various mineral admixtures’,Cement and Concrete Research 25 (4) (May 1995) 715–720.

    Article  Google Scholar 

  12. Kovler, K. and Zaitsev, Yu., ‘Effect of Aggregate Concentration on Strength, Elasticity Modulus and Fracture Mechanics Characteristics of Concrete’, Proc. of the International Symposium on Brittle Matrix Composites-4, Warsaw, Ed. A. Brandt, V. Li & I. Marshall (Woodhead Publ., Cambridge & Warsaw, 1994) 363–369.

    Google Scholar 

  13. Dewar, J. D., ‘The indirect Tensile Strength of Concretes of High Compressive Strength’, Technical Report No 42.377 (Cement and Concrete Association, Wexham Springs, Mar. 1964) 12 pp.

    Google Scholar 

  14. Zhou, F. P. Barr, B. I. G. and Lydon, F. D., ‘Fracture properties of high strength concrete with varying silica fume content and aggregates’,Cement and Concrete Research 25 (3) (Apr. 1995) 543–552.

    Article  Google Scholar 

  15. COMITÉ EURO-INTERNATIONAL DU BÉTON, High Performance Concrete, Recommended Extensions to the Model Code 90, Bulletin 228, 1995, 33 pp.

  16. Kovler, K., Schamban, I., Igarashi, S. and Bentur, A., ‘Influence of mix proportions and curing conditions on the compressive strength of high-performance concrete’,accepted for publication, ACI, Materials Journal

  17. Igarashi, S., Bentur, A. and Kovler, K., ‘Autogenous shrinkage and induced restraining stresses in high strength concretes’,submitted for publication.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Editoral note Dr. K. Kovler, Prof. Dr. S. Igarashi and Prof. A. Bentur are RILEM Senior Members. Technion is a RILEM Titular Member. Prof A. Bentur is a Fellow of RILEM and a member of the Coordinating Committee, He is the Chairman of TC 159-ETC: ‘Engineering of the interfacial transition zone in cementitious composites’ (co-chaired with Prof. Alexander) and of TC EAS: ‘Early age shrinkage induced stresses and cracking in cementitious systems’, Dr. K. Kovler is a member of the TC EAS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovler, K., Schamban, I., Igarashi, S. et al. Influence of mix proportions and curing conditions on tensile splitting strength of high strength concretes. Mat. Struct. 32, 500–505 (1999). https://doi.org/10.1007/BF02481634

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02481634

Keywords

Navigation