Skip to main content
Log in

Hemolytic effects of energy dissipation in flowing blood

  • Published:
Medical and biological engineering Aims and scope Submit manuscript

Abstract

Typical extracorporeal circulation systems subject blood to abnormal and severe physical conditions. The local rate of mechanical hemolysis under such conditions is postulated to be a function of the local rate of mechanical energy dissipation. This hypothesis was tested by examining the rates of hemolysis in four types of flow. The average rate of hemolysis is expressed as a power function of the average dissipation rate. In the absence of cavitation, the lysis rate in all four cases depends on the average dissipation rate raised to the 1·2 power. The constant of proportionality in each case, however, depends on the spatial distribution of dissipation. The more non-uniform the dissipation, the greater the hemolysis rate for the same average dissipation rate. No statistical correlation was found between the tendency of a particular blood to lyse osmotically and the tendency to lyse mechanically.

Sommaire

Les systèmes de circulation extra-corporelles traditionnels soumettent le sang à des conditions physiques anormales et sévères. Le taux d'hémolyse mécanique local, dans de telles conditions, est supposé être une fonction du taux local d'énergie mécanique dissipée. On a contrôlé cette hypothèse en examinant les taux d'hémolyse pour quatre types de circulation. Le taux moyen d'hémolyse s'exprime comme la puissance n.ième du taux moyen de dissipation. En l'absence de turbulence, le taux d'hémolyse dans les quatre cas dépend du taux moyen de dissipation élevé à la puissance 1,2; le coefficient de proportionnalité dans chacun des cas dépend cependant de la distribution spatiale de la dissipation. On constate que moins cette dissipation est uniforme, plus le taux d'hémolyse augmente, pour un même taux de dissipation moyen. Il n'a été trouvé aucune corrélation entre la tendance à l'hémolyse osmotique et la tendance à l'hémolyse mécanique d'un sang particulier.

Zusammenfassung

Die üblichen extrakorporalen Kreislaufsysteme setzen das Blut abnormen und schweren physikalischen Belastungen aus. Die örtliche Geschwindigkeit der unter solchen Bedingungen auftretenden Hämolyse wird als Funktion der örtlichen Geschwindigkeit der Dissipation mechanischer Energie postuliert. Diese Hypothese wurde durch Untersuchung der Hämolyserate bei vier Durchflußtypen getestet. Die mittlere Hämolyserate wird als Potenzfunktion der mittleren Dissipationsrate ausgedrückt. Wenn keine Höhlenbildung vorliegt, hängt in allen vier Fällen die Lyserate von der 1,2ten Potenz der mittleren Dissipationsrate ab. Der Proportionalitätsfaktor hängt jedoch von der räumlichen Verteilung der Dissipation ab. Je uneinheitlicher die Dissipation, um so größer ist die Hämolyserate. Zwischen der Tendenz einer Blutprobe, osmotisch oder mechanisch zu lysieren, konnte keine Korrelation gefunden werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c :

hematocrit

E :

average rate of energy dissipation,\(\bar \Phi \)

h :

local rate of hemolysis

k :

constant

K :

\(k{{\left( {\overline {\Phi ^n } } \right)} \mathord{\left/ {\vphantom {{\left( {\overline {\Phi ^n } } \right)} {\left( {\bar \Phi } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {\bar \Phi } \right)}}^n \)

n :

constant

N :

platen speed in rev/min for Mooney viscometer

P :

local fluid pressure

Q :

fluid flow rate

R i :

inner radius of Mooney viscometer=1·934 in

R o :

outer radius of Mooney viscometer=1·969 in

Re :

Reynolds number for couette flow

T :

experiment time

T o :

measured torque in rheogoniometer

U i :

peripheral velocity of inner cylinder of Mooney viscometer

V :

volume

α:

cone angle of Mooney viscometer=0·947 deg

∈:

ratio of inner to outer radii for Couette viscometer

μ:

absolute viscosity

ν:

kinematic viscosity

ρ:

fluid density

Φ:

dissipation function, local rate of mechanical energy dissipation

Ω:

relative angular velocity of Mooney viscometer platens

a :

auxiliary units

c :

lumped effect of auxiliary components other than pump

cp :

cone plate viscometer

ct :

couette viscometer

t :

inner cylinder

p :

pump, also used outside parentheses to indicate effects due to downstream pump pressure

o :

outer cylinder

s :

due to pump speed

t :

test section

−:

average over finite volume

References

  • Bernstein, E. F. andGleason, L. R. (1967a) Factors influencing hemolysis with roller pumps.Surgery 61, 432.

    Google Scholar 

  • Bernstein, E. F., Blackshear, P. L., Jr. andKeller, K. H. (1967b) Factors influencing erythrocyte destruction in artificial organs.Am. J. Surg. 114, 126.

    Article  Google Scholar 

  • Blackshear, P. L., Jr.,Dorman, F. D. andSteinbach, J. H. (1965) Some mechanical effects that influence hemolysis.Trans. Am. Soc. artif. internal Organs 11, 112.

    Google Scholar 

  • Blackshear, P. L., Jr.,Dorman, F. D., Steinbach, J. H., Mayback, E. J., Singh, A. andCollingham, R. E. (1966) Shear, wall interaction and hemolysis.Trans. Am. Soc. artif. internal Organs 12, 113.

    Google Scholar 

  • Cannon, M. R. (1944).Analyt. Chem. 16, 708.

    Google Scholar 

  • Danon, D., Sheffman, A. andEfrati, P. (1965) Analysis of osmotic fragility as a routine test in clinicsal practice.Israel J. Med. Sci. 1, 757.

    Google Scholar 

  • Eisman, M. M. (1967) Erythrocyte resistance to negative pressure. M.S. Thesis, Northwestern University (1967).

  • Farol Research Engineers, Ltd. (1964)The Weissenberg Rheogoniometer Instruction Manual Sussex, England.

  • Fleisch, A. andFleisch, H. (1960) Der hämoresistometer ein ger ät bestimmung der meschranischen resisteng der erythrocyten.Schweiz Med. Wschr. 90, 186.

    Google Scholar 

  • Flink, E. B. andWatson, C. J. (1942) A method for the quantitative determination of hemoglobin and related heme pigments in feces, urine, and blood plasma.J. biol. Chem. 146, 171.

    Google Scholar 

  • Galletti, P. M. andBrecher, G. A. (1962).Heart-Lung Bypass. Gruner Stratton.

  • Knapp, C. F. (1968) An experimental investigation of the mechanism of hemolysis in Couette flow. Ph.D. dissertation, Aero-Space Engineering, Notre Dame University.

  • Kolmer, J. A., Spaulding, E. H. andRobinson, H. W. (1951)Accepted Clinical Procedures. Appleton-Century-Crofts.

  • Kusserow, B. K. andKendall, L. W. (1963)In vitro changes in the corpuscular elements of blood flowing in tubular conduits.Trans. Am. Soc. artif. internal Organs 9, 262.

    Google Scholar 

  • Leith, W. C. (1966) Cavitation effects in the blood circulatory system.Biomedical Fluid Mechanics Symposium. Am. Soc. Mech. Engs.

  • Schlicting, H. (1960)Boundary Layer Theory. McGraw-Hill.

  • Wells, R. E. andMerrill, E. W. (1961). Shear rate dependence of the viscosity of whole blood and plasma.Science V, 133.

    Google Scholar 

  • Yarborough, K. A., Mockros, L. F. andLewis, F. J. (1966) Hydrodynamic hemolysis in extracorporeal machines.J. thac. cardiovasc. Surg. 52, 550.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bluestein, M., Mockros, L.F. Hemolytic effects of energy dissipation in flowing blood. Med. & biol. Engng. 7, 1–16 (1969). https://doi.org/10.1007/BF02474665

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02474665

Keywords

Navigation