Skip to main content
Log in

Residual mechanical properties of heated concrete incorporating different pozzolanic materials

  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

This paper aims at showing the effect of high temperatures on mechanical properties of concretes in which Portland cement (PC) has been partially replaced by pozzolanic materials. Three types of pozzolanic material, one natural pozzolana and two lignite fly ashes (one of low and one of high lime content) were used for the replacement. Concrete specimens were tested at four temperature levels of 200, 400, 600 and 800°C without any imposed load. The specimens for each of the chosen temperatures were heated under the same heating regime, so a comparison of their behaviour during heat exposure concerning their mechanical properties was possible. Tests of compressive strength, splitting tensile strength and modulus of elasticity were carried out on specimens cooled slowly to room temperature 1 day, 7 days, 1 month and 3 months after heating. Based on the results of this experimental work it can be said that concretes with pozzolanic materials added to the mixer in partial replacement of PC are more sensitive to exposure to fire than conventional concretes. A relatively greater drop in the strength of the concretes with pozzolanic materials was found especially in the temperature area of 200°C when they were compared with conventional concrete made from PC of Greek type (10% insoluble residue). This particular sensitivity was attributed to heat deformations of hardened pastes, as all the other testing parameters concerning consistency and rate of heating remained the same for all specimens. It is suggested that this is caused by the escape of the non-evaporable water that exists as combined water in hardened pastes of pozzolanic binding agents. These pastes are richer in compounds such as calcium aluminates, calcium aluminate sulfates and tobermorite gel (C-S-H) which are decomposed between 110 and 150°C.

Resume

Cette étude fait partie d'une recherche sur l'effet de la température sur les propriétés mécaniques de béton dans lequel le ciment Portland a été remplacé au cours du mixage par des matériaux pouzzolaniques. Trois types de ces matériaux, soit deux cendres volantes et une pouzzolane naturelle, ont été utilisés afin de remplacer partiellement le ciment Portland dans le béton. Les éprouvettes de béton non modifié ont été soumises à différentes températures: 200, 400, 600 et 800°C. La résistance en compression, en traction, et le module d'élasticité ont été mesurés à un jour, sept jours, un mois et trois mois après ;'essai thermique.

Les bétons renfermant des matériaux pouzzolaniques ont manifesté une forte diminution de la résistance et de l'élasticité. On peut dire que le remplacement du ciment Portland par des matériaux pouzzolaniques ne contribue pas à l'augmentation de la résistance du béton au feu, tout au moins dans le cas de températures peu élevées.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Malhotra, H. L., ‘Report on the work of technical committee 44-PHT. Properties of materials at high temperatures’Matér. Constr. 15(86).

  2. Committé Euro-International du Béton, “Design of concrete structures for fire resistance’, Bulletin d'Information No. 145 (1982).

  3. Schneider, U. ‘Effect of Fire on Concrete’, RILEM Committee 44-PHT (1980).

  4. Kalogeras, A. and Tassios, T., ‘Fine ground Santorini earth as concrete additive’,Technica Chronica 35 (1958) 329–344.

    Google Scholar 

  5. Papayianni, J., ‘Strength and bond data for Greek high lime fly ash concrete’, SCI SP 91-17 (1986) pp. 367–386.

    Google Scholar 

  6. Abrams, M. S., “Compressive strength of concrete at temperatures to 1600°F, in ‘Temperature and Concrete’, ACI. SP-25 (1971).

  7. Malhotra, H. L., ‘The effect of temperature on the compressive strength of concrete’, Mag. Concr. Res.8(23) 85–94.

  8. Piasta, J., ‘Heat deformations of cement paste phases and the microstructure of cement paste’,Mater. Struct. 17(102) (1984) 415–420.

    Google Scholar 

  9. Taylor, H. F. W., ‘The Chemistry of Cements’, Vol. 2 (Academic, London, 1964).

    Google Scholar 

  10. Idem, ‘The Chemistry of Cement’, Vol. 1 (Academic, London, 1964).

    Google Scholar 

  11. Lea, F. M., ‘The Chemistry of Cement and Concrete’ (Arnold, Glasgow, 1970).

    Google Scholar 

  12. Mehta, P. K., ‘Concrete: Structure Properties and Materials’ (Prentice-Hall, Englewood Cliffs, New Jersey, 1986).

    Google Scholar 

  13. Papayianni, J., ‘Utilization of lignite fly ash of Ptolemaida in concrete production’, Doctoral thesis, Aristotle University of Thessaloniki (1981) (in Greek).

  14. Idem Papayianni, J., ‘An investigation of the pozzolanicity and hydraulic reactivity of a high lime fly ash’,Mag. Concr. Res. 39 (138) (1987).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papayianni, J., Valiasis, T. Residual mechanical properties of heated concrete incorporating different pozzolanic materials. Materials and Structures 24, 115–121 (1991). https://doi.org/10.1007/BF02472472

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02472472

Keywords

Navigation