Skip to main content
Log in

Factors influencing chloride-induced corrosion of reinforcement in concrete

  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The paper presents the results of a corrosion investigation on rebar electrodes embedded in concrete prism specimens which were exposed to cycles of sea-water spray for up to about 600 days (1200 marine cycles). The w/c ratio of the matrix was varied between 0.45 and 0.76 and the cement content ranged between 330 and 530 kg m−3. Corrosion potential and polarization resistance of the electrodes were monitored at regular intervals by means of electrochemical procedures using a potentiostat apparatus. The Cl and OH concentrations in the matrix were also determined at the level of rebar electrodes. The results show that cement content has an insignificant influence on rebar corrosion, w/c ratio being the dominant factor which controls corrosion. The Cl and OH concentrations of the pore fluid are of secondary importance relative to w/c ratio. Acceptable corrosion rates are achieved at a w/c of 0.45, with the pore fluid Cl/OH ratio reaching a value of 11.

Resume

Cet article présente les résultats d’une étude sur la corrosion de barres de renforcement formées par des armatures enrobées dans des prismes de béton exposés à l’eau de mer pendant des cycles allant jusqu’ à 600 jours (1200 cycles marins). On a fait varier le rapport eau/ciment de la matrice de 0,45 à 0,76 et la teneur en ciment de 300 à 530 kg m−3. On a contrôlé le potentiel de corrosion et la résistance à la polarisation des électrodes à intervalles réguliers par des méthodes électro-chimiques. On a également déterminé les concentrations en Cl et OH au niveau des électrodes.

Les résultats montrent que la teneur en ciment a un effet insignifiant sur la corrosion du renforcement, le rapport eau/ciment étant le facteur dominant qui régit la corrosion. L’influence des concentrations en Cl et OH du liquide interstitiel est relativement secondaire. On atteint des taux de corrosion acceptables avec un rapport eau/ciment de 0,45 et un rapport Cl/OH du liquide interstitiel de 11.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Report of the Committee on corrosion and Protection (Hoar Report, Department of Trade and Industry (HM Stationery Office, London, 1971).

  2. Schiessl, P. (ed.), ‘Corrosion of Steel in Concrete’, RILEM Report, (Chapman & Hall, London, 1988).

    Google Scholar 

  3. FIP, Recommendations for the Design and Construction of Concrete Sea Structures, 2nd Edn (1974) pp. 28–30.

  4. ACI Committee 222, ‘Corrosion of metals in concrete’, ACI 222R-85,ACI J. Proc. 82(1), 3–32.

  5. British Standards Institution, ‘Structural use of concrete’, BS8110, Part 1 (BSI, London, 1985).

    Google Scholar 

  6. Hausmann, D. A., ‘Steel corrosion in concrete, how does it occur?,Mater. Protectn (November 1967) 19–23.

    Google Scholar 

  7. Mangat, P. S. and Gurusamy, K., ‘Corrosion resistance of steel fibres in concrete under marine exposure’,Cement Concr. Res. 18 (1988) 44–54.

    Article  Google Scholar 

  8. Mangat, P. S., Molloy, B. T. and Gurusamy, K., ‘Marine durability of steel fibre reinforced concrete of high water/cement ratio’, in Proceedings, ‘Fibre reinforced cements and concretes’ (Elsevier Science, 1989) 553–562.

  9. Page, C. L. and Cunningham, P. J., ‘Electrochemical methods of corrosion monitoring for marine concrete structures’, UK Department of Energy Offshore Technology Report OTH 87245 (HM Stationery Office, London, 1987).

    Google Scholar 

  10. Mansfield, F., ‘Polarisation resistance measurements— experimental procedure and evaluation of test data’, in ‘Electrochemical Techniques for Corrosion’, edited by R. Baboian (National Association of Corrosion Engineers, Library of Congress No. 77-71054).

  11. Berke, N. S., ‘Effects of calcium nitrate and mix design on the corrosion resistance of steel in concrete (Part 1)’, in Proceedings, Corrosion 85’, National Association of Corrosion Engineers, Boston, March 1985, Paper No. 273.

  12. Stratful, R. F., ‘Half cell potentials and the corrosion of steel in concrete’, American Highway Research Record No. 433 (1973) pp. 12–21.

    Google Scholar 

  13. I Struct E/ICE Joint Committee, ‘Manual for the Design of Reinforced Concrete Building Structures’ (Institution of Structural Engineers, London, 1985).

    Google Scholar 

  14. Pocock, D. C. and Gurusamy, K., ‘Protective measures for new or existing reinforced concrete structures’, in Proceedings of 3rd International Conference on Deterioration and Repair of Reinforced Concrete in the Arabian Gulf, Bahrain, October 1989, Vol. 2.

  15. Escalante, E., ‘Effectiveness of potential measurements of estimating corrosion of steel in concrete’, in ‘Corrosion of Reinforcement in Concrete’, edited by C. L. Page, K. W. J. Treadway and P. B. Bamforth (Elsevier Applied Science, 1990) pp. 281–292.

  16. Rasheeduzzafar, Al-Saadoun, S. S., Dakhil, F. H. and Al-Gahtani, A. S., ‘Effect of cement composition on corrosion of reinforcing steel in concrete’,ibid. ‘Corrosion of Reinforcement in Concrete’, edited by C. L. Page, K. W. J. Treadway and P. B. Bamforth (Elsevier Applied Science, 1990) pp. 213–226.

  17. Yonezawa, T., Ashworth, V., and Procter, R. P. M., ‘Pore solution composition and chloride effects on the corrosion of steel in concrete’,Corros. Engng 44(7) (1988) 489–499.

    Google Scholar 

  18. Stern, M. and Geary, A. L., ‘Electrochemical polarisation: 1. A theoretical analysis of the shape of polarisation curves’,J. Electrochem. Soc. (January 1957).

  19. Stern, M. and Weisert, E. D., ‘Experimental observations on the relation between polarisation resistance and corrosion rate’,Proc. Amer. Soc. Testg Mater. 59 (1959) 1280.

    Google Scholar 

  20. Mangat, P. S. and Gurusamy, K., ‘Pore fluid composition under marine exposure of steel fibre reinforced concrete’,Cement Concr. Res. 17 (1987) 734–742.

    Article  Google Scholar 

  21. Molloy, B. T., ‘Steel fibre and rebar corrosion in concrete under marine exposure’, PhD thesis, University of Aberdeen (1991).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mangat, P.S., Molloy, B.T. Factors influencing chloride-induced corrosion of reinforcement in concrete. Materials and Structures 25, 404–411 (1992). https://doi.org/10.1007/BF02472256

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02472256

Keywords

Navigation