Skip to main content
Log in

Effect of cold drawing on susceptibility to hydrogen embrittlement of prestressing steel

  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

This paper compares the behaviour under aggressive environmental conditions of a prestressing steel in two forms (bar and wire) of different yield strengths, to investigate the influence of this material parameter on their susceptibility to hydrogen-assisted cracking in aqueous environments. Slow strain-rate tests using pre-cracked, specimens were performed under various environment conditions. Different fatigue pre-cracking loads were used to analyse the influence of the stress state in the vicinity of the crack tip on the hydrogen-assisted cracking process. The results confirm the well-known fact that the highest-strength steel is the most susceptible to hydrogen embrittlement. A model of hydrogen diffusion in metals— including the effects of both hydrogen concentration and hydrostatic stress distribution—is proposed to explain these results on the basis of the stress-strain curve of the material. Consideration is given to compressive residual stresses induced in the vicinity of the crack tip during the fatigue pre-cracking process. The model is able to explain the different susceptibility to hydrogen embrittlement of the two steels.

Resume

On utilise couramment deux types d’aciers dans le béton armé: les aciers tréfilés (C−Mn) ou trempés (Si−Cr). Bien que leur limite élastique soit assez élevée pour garantir une durée de service normale dans la zone d’élasticité, leur résilience est moindre que celle des aciers ductiles de limite élastique inférieure, et ils sont, par conséquent, plus sujets à des défauts tels que fissures ou encoches. De plus, ces aciers peuvent se fissurer sous l’influence d’une ambinace corrosive. On compare ici le comportement dans des conditions agressives, d’un acier de précontrainte C−Mn sous forme de barre ou de fil, de limites élastiques différentes, afin d’étudier l’influence, de ce paramètre du matériau sur la fissuration favorisée par l’hydrogène en milieux aqueux et, par suite, l’effet (bénéfique ou non) du procédé de tréfilage de ce point de vue particulier. Le programme expérimental consistait en une série d’essais de déformation à vitesse lente sur des éprouvettes pré-fissurées dans des conditions ambiantes variées. On a utilisé différentes charges de pré-fissuration en fatigue pour analyser l’influence de l’état de contrainte au voisingage de l’extrémité de la fissure sur le processus de fissuration favorisé par l’hydrogène. Les résultats confirment le fait bien connu, à sovoir que le fil tréfilé (acier de haute résistance) est davantage sujet à la fragilisation par l’hydrogène que la barre laminée à chaud (résistance plus basse), ce qui montre que le tréfilage réduit la résistance d’un acier de précontrainte à la fissuration favorisée par l’hydrogène.

Dans la partie théorique, on propose un modèle de diffusion de l’hydrogène dans les métaux—qui tient compte des effets de la concentration en hydrogène et de la distribution des contraintes hydrostatiques—pour expliquer les résultats expérimentaux à partir de la courbe contrainte/déformation établie pour chaque matériau. On tient compte des contraintes en compression résiduelles qui se produisent au voisinage de l’extrémité de la fissure pendant le processus de pré-fissuration en fatigue, et qui sont modélisées selon les distributions de Rice pour un matériau élastique idéalement plastique. Le modèle permet d’expliquer les différentes susceptibilités à la fragilisation à l’hydrogène des deux formes d’acier de précontrainte à haute résistance (barre et fil): après la pré-fissuration en fatigue, la barre laminée à chaud présente une zone plastique plus large que le fil tréfilé, et l’hydrogène doit couvrir une plus longue distance avant d’atteindre le point critique, ce qui explique pourquoi la barre laminée est moins susceptible à la fragilisation à l’hydrogène.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Elices, M., ‘Fracture of steels for reinforcing and prestressing concrete’, in ‘Fracture Mechanics of Concrete: Structural Application and Numerical Calculation’ edited by G. C. Sih and A. DiTommaso (Martinus Nijhoff, Dordrecht, 1985) pp. 226–271.

    Google Scholar 

  2. McGuinn, K. F. and Elices, M., ‘Stress corrosion resistance of transverse pre-cracked prestressing tendon in tension’,Br. Corros. J. 16 (1981) 187–195.

    Google Scholar 

  3. Parkins, R. N., Elices, M., Sánchez-Gálvez, V. and Caballero, L., ‘Environment sensitive cracking of pre-stressing steels’,Corros. Sci. 22 (1982) 379–405.

    Article  Google Scholar 

  4. FIP-78 (Stress Corrosion Test): ‘Stress Corrosion Cracking Resistance for Prestressing Tendons’, Technical Report No. 5.7 (International Prestressing Federation, Wrexham Springs, Slough, UK, 1981).

  5. Elices, M., Sánchez-Gálvez, V. and Entrena, A., ‘Stress corrosion testing of cold drawn steel wires in NH4SCN solution.K ISCC measurement’, in Proceedings of 3rd International Prestressing Federation Symposium, Madrid, 1981.

  6. Parkins, R. N., Elices, M. and Sánchez-Gálvez, V., ‘Some comments on the standardization of tests methods for pre-stressing steel’,ibid. in Proceedings of 3rd International Prestressing Federation Symposium, Madrid, 1981.

  7. Elices, M., Maeder, G. and Sánchez-Gálvez, V., ‘Effect of surface residual stress on hydrogen embrittlement of prestressing steels’,Br. Corros. J. 18 (1983) 80–81.

    Google Scholar 

  8. Toribio, J. and Elices, M., ‘Influence of residual stresses on hydrogen embrittlement susceptibility of prestressing steels’,Int. J. Solids Struct. 28 (1991) 791–803.

    Article  Google Scholar 

  9. Astiz, M. A., ‘Estudio de la estabilidad de una fisura superficial en un alambre de acero de alta resistencia’, PhD thesis, Polytechnical University of Madrid (1976).

  10. Athanassiadis, A., Boissenot, J. M., Brevet, P., Francois, D. and Raharinaivo, A., ‘Linear elastic fracture mechanics computations of cracked cylindrical tensioned bodies’,Int. J. Fract. 17 (1981) 553–566.

    Article  Google Scholar 

  11. Astiz, M. A., ‘An incompatible singular elastic element for two- and three-dimensional crack problems’,ibid. 31 (1986) 105–124.

    Article  Google Scholar 

  12. Parkins, R. N., ‘Development of strain-rate testing and its implications’, in ‘Stress Corrosion Cracking—The Slow Strain Rate Technique’, STP 665, edited by G. M. Ugianski and J. H. Payer (ASTM, Philadelphia, Pennsylvania, 1979) pp. 5–25.

    Google Scholar 

  13. Scully, J. C., ‘Propagation of stress corrosion cracks under constant strain-rate conditions’,ibid. ‘ pp. 237–253.

    Google Scholar 

  14. Puiggali, M., Desjardins, D. and Ajana, L., ‘A critical study of stress corrosion cracking testing methods for stainless steels in hot chloride media’,Corros. Sci. 27 (1987) 585–594.

    Article  Google Scholar 

  15. Lancha, A. M., ‘Influencia del trefilado en la corrosión bajo tensión de aceros eutectoides’, PhD thesis, Complutense University of Madrid (1987).

  16. Brown, B. F., Fujii, C. T. and Dahlberg, E. P., ‘Methods for studying the solution chemistry within stress corrosion cracks’,J. Electrochem. Soc. 116 (1969) 218–219.

    Google Scholar 

  17. Barth, C. F., Steingerwald, E. A. and Troiano, A. R., ‘Hydrogen permeability and delayed failure of polarized martensitic steels’,Corrosion-NACE 25 (1969) 353–358.

    Google Scholar 

  18. Brown, B. F., ‘Concept of the occuluded corrosion cell’,ibid. 26, (1970) 249–250.

    Google Scholar 

  19. Smith, J. A., Peterson, M. H. and Brown, B. F., ‘Electrochemical conditions at the tip of an advancing stress corrosion crack in AISI 4340 steel’,ibid. 26 (1970) 539–542.

    Google Scholar 

  20. Turnbull, A., ‘The solution composition and electrode potential in pits, crevices and cracks’,Corros. Sci. 23 (1983) 833–870.

    Article  Google Scholar 

  21. Etienne, C. F. and Wijngaard, B. H., ‘Comparison of stress corrosion testing of prestressing steel under constant load and constant strain rate’, in Proceedings of 3rd International Prestressing Federation Symposium, Madrid, 1981.

  22. Tanaka, Y., Yamaoka, Y. and Karauchi, M., ‘Effects of tensile strength on the stress corrosion behavior of steel wires in NH4SCN and NH4NO3 aqueous solutions’,ibid. Proceedings of 3rd International Prestressing Federation Symposium, Madrid, 1981.

  23. Toribio, J. and Elices, M., ‘Role of diffusion in the hydrogen transport in metals’, in ‘Fracture Behaviour and Design of Materials and Structures (ECF8)’, edited by D. Firrao (Engineering Materials Advisory Service, West Midlands, UK, 1990) pp. 451–460.

    Google Scholar 

  24. Beck, W., Bockris, J. O., McBreen, J. and Nanis, L., ‘Hydrogen permeation in metals as a function of strees, temperature and dissolved hydrogen concentration’,Proc. Roy. Soc. 290 (1966) 220–235.

    Google Scholar 

  25. Bockris, J. O’M and Subramanyan, P. K., ‘Hydrogen embrittlement and hydrogen traps’,J. Electrochem. Soc. 118 (1971) 1114–1119.

    Google Scholar 

  26. Iino, M., ‘Trapping of hydrogen by sulfur-associated defects in steel’,Metall. Trans. 16A (1985) 401–409.

    Google Scholar 

  27. Choo, W. Y. and Lee, J. Y., ‘Effect of cold working on the hydrogen trapping phenomena in pure iron’,ibid. 14A (1983) 1299–1305.

    Google Scholar 

  28. Pound, B. G., ‘The application of a diffusion/trapping model for hydrogen ingress in high-strength alloys’,Corrosion 45 (1989) 18–25.

    Google Scholar 

  29. Van Leeuwen, H. P., ‘The kinetics of hydrogen embrittlement: a quantitative diffusion model’,Engng Fract. Mech. 6 (1974) 141–161.

    Article  Google Scholar 

  30. Astiz, M. A., ‘Hydrogen diffusion analysis in metals’, in ‘Computational Methods for Non-linear Problems’, edited by C. Taylor, D. R. J. Owen and E. Hinton (Pineridge, Swansea, 1987) pp. 271–299.

    Google Scholar 

  31. Bockris, J. O’M. and Subramanyan, P. K., ‘A thermodynamic analysis of hydrogen in metals in the presence of an applied stress field’,Acta Metall. 19 (1971) 1205–1208.

    Article  Google Scholar 

  32. Rice, J. R., ‘Mechanics of crack tip deformation and extension by fatigue’, STP 415, (ASTM, Philadelphia, Pennsylvania, 1967) pp. 247–309.

    Google Scholar 

  33. Pippan, R., ‘The growth of short cracks under cyclic compression’,Fatigue Fract. Engng. Mater. Struct. 9 (1987) 319–328.

    Google Scholar 

  34. Toribio, J. and Elices, M., ‘Slow strain rate technique applied to round-notched wires’, in Proceedings of Corrosion/88 (Corrosion Research Symposium), St. Louis, March 1988 (National Association of Corrosion Engineers) pp. 88–92.

  35. Toribio, J. and Elices, M., ‘Effect of local strain in stress corrosion testing’ in ‘Failure Analysis. Theory and Practice (ECF7)’, edited by E. Czoboly (Engineering Materials Advisory Service, West Midlands, UK, 1988) pp. 1011–1013.

    Google Scholar 

  36. Toribio, J., Lancha, A. M. and Elices, M., ‘Macroscopic variables governing the microscopic fracture of pearlitic steels’,Mater. Sci. Engng A145 (1991) 167–177.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toribio, J., Lancha, A.M. Effect of cold drawing on susceptibility to hydrogen embrittlement of prestressing steel. Materials and Structures 26, 30–37 (1993). https://doi.org/10.1007/BF02472235

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02472235

Keywords

Navigation