Skip to main content
Log in

The rate of convergence for subexponential distributions

  • Published:
Lithuanian Mathematical Journal Aims and scope Submit manuscript

Abstract

A distribution functionF on the nonnegative real line is called subexponential if

$$\mathop {\lim }\limits_{x \to \infty } \left( {1 - F^{*n} (x)} \right)/\left( {1 - F(x)} \right) = n, for all n \geqslant 2,$$

whereF *n denotes then-fold Stieltjes convolution ofF with itself. In this paper, we consider the rate of convergence in the above definition and we discuss the asymptotic behavior ofR n (x) defined byR n (x)=1−F *n (x)−n(1−F(x)). Our results complement those previously obtained by several authors. In this paper, we define several new classes of functions related to regular variation andO-regular variation. As a typical result, in one of our theorems we show thatR n (x)=O(1)f(x)R(x), wheref(x) is the density ofF andR(x)=∫ x0 (1−F(y))dy. We also discuss some applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular variation, in:Encyclopedia of Mathematics and Its Applications,27, Cambridge University Press (1987).

  2. V. P. Chistyakov, A theorem on sums of independent positive random variables and its application to branching random processes,Theory Probab. Appl.,9, 640–648 (1964).

    Article  Google Scholar 

  3. J. Chover, P. Ney and S. Wainger, Functions of probability measures,J. Anal. Math.,26, 255–302 (1973).

    Article  MATH  MathSciNet  Google Scholar 

  4. P. Embrechts and C. M. Goldie, Comparing the tail of an infinitely divisible distribution with integrals of its Lévy measure,Ann. Probab.,9, 468–481 (1981).

    MATH  MathSciNet  Google Scholar 

  5. P. Embrechts and N. Veraverbeke, Estimates for the probability of ruin with special emphasis on the possibility of large claims,Insurance: Math. Econom.,1, 55–72 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  6. W. Feller,An Introduction to Probability Theory and Its Applications, Vol. 2, Wiley, New York (1971).

    MATH  Google Scholar 

  7. J. L. Geluk and A. G. Pakes, Second-order subexponential distributions,J. Austral. Math. Soc. Ser. A,51, 73–87 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  8. J. L. Geluk, Tails of subordinated laws: the regularly varying case,Stochastic Process. Appl.,61, 147–161 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  9. C. Klüppelberg, Subexponential distributions and integrated tails,J. Appl. Probab.,25, 132–141 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  10. C. Klüppelberg, Estimation of ruin probabilities by means of hazard rates,Insurance: Math. Econom.,8, 279–285 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  11. E. Omey and E. Willekens, Second-order behaviour of the tail of a subordinated probability distribution,Stochastic Process. Appl.,21, 339–353 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  12. E. Omey and E. Willekens, On the difference between the distribution of sums and maxima, in:Stability Problems for Stochastic Models, Lecture Notes in Mathematics,1233, V. M. Zolotarev (Ed.), (1986), pp. 103–113.

  13. E. Omey and E. Willekens, Second-order behaviour of distributions subordinate to a distribution function with finite mean,Comm. Statist. Stochastic Models,3, 311–342 (1987).

    MATH  MathSciNet  Google Scholar 

  14. E. Omey, On the difference between the product and the convolution product of distribution functions,Publ. Inst. Math. Beograd (N.S.),55 (69), 111–145 (1994).

    MATH  MathSciNet  Google Scholar 

  15. J. L. Teugels, The class of subexponential distributions,Ann. Probab.,3, 1000–1011 (1975).

    MATH  MathSciNet  Google Scholar 

  16. N. Veraverbeke, Asymptotic behaviour of Wiener-Hopf factors of a random walk,Stochastic Process. Appl.,5, 27–37 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  17. E. Willekens, The structure of the class of subexponential distributions,Probab. Theory Related Fields,77, 567–581 (1988).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Lietuvos Matematikos Rinkinys, Vol. 38, No. 1, pp. 1–18, January–March, 1998. Original article submitted April 24, 1996.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baltrūnas, A., Omey, E. The rate of convergence for subexponential distributions. Lith Math J 38, 1–14 (1998). https://doi.org/10.1007/BF02465540

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02465540

Keywords

Navigation