Skip to main content
Log in

Effects of ectomycorrhizal and vesicular-arbuscular mycorrhizal fungi on drought tolerance of four leguminous woody seedlings

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Seedlings ofAcacia auriculiformis A. Cunn. ex. Benth.,Albizia lebbeck (L.) Benth.,Gliricidia sepium (Jac.) Walp andLeucaena leucocephala (Lam.) de Wit. were inoculated with an ectomycorrhizal (Boletus suillus (l. ex. Fr.) or indigenous vesicular-arbuscular mycorrhizal (VAM) fungi in a low P soil. The plants were subjected to unstressed (well-watered) and drought-stressed (water-stressed) conditions. InGliricidia andLeucaena, both mycorrhizal inoculations stimulated greater plant growth, P and N uptake compared to their non-mycorrhizal (NM) plants under both watering regimes. However, inAcacia andAlbizia, these parameters were only stimulated by either ectomycorrhiza (Acacia) or VA mycorrhiza (Albizia). Growth reduction occurred as a result of inoculation with the other type of mycorrhiza. This was attributed to competition for carbon betweenAcacia and VA mycorrhizas and parasitic association betweenAlbizia and ectomycorrhiza.

Drought-stressed mycorrhizal and NMLeucaena, and drought-stressed mycorrhizalAcacia tolerated lower xylem pressure potentials and larger water losses than the drought-stressed mycorrhizal and NMAlbizia andGliricidia. These latter plants avoided drought by maintaining higher xylem pressure potentials and leaf relative water content (RWC). All the four leguminous plants were mycorrhizal dependent. The higher the mycorrhizal dependency (MD), the lower the drought tolerance expressed in terms of drought response index (DRI). The DRI may be a useful determinant of MD, as they are inversely related.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen E B and Allen M F 1986 Water relations of xeric grasses in the field: Interactions of mycorrhizal and competition. New Phytol. 104, 559–571.

    Article  Google Scholar 

  • Allen M F 1982 Influence of vesicular-arbuscular mycorrhizae on water movement throughBouteloua gracilis (H.B.K.) Lag ex Steud. New Phytol. 91, 191–196.

    Article  Google Scholar 

  • Allen M F and Boosalis M G 1983 Effects of two species of VA mycorrhizal fungi on drought tolerance of winter wheat. New Phytol. 93, 67–76.

    Article  Google Scholar 

  • Bethlenfalvay G J, Brown M S and Pacovsky R S 1982 Parasitic and mutualistic associations between a mycorrhizal fungus and soybean: Development of the host plant. Phytopathology 72, 889–893.

    CAS  Google Scholar 

  • Brundrett M C, Piché Y and Peterson R L 1984 A new method for observing the morphology of vesicular-arbuscular mycorrhizae. Can. J. Bot. 62, 2128–2134.

    Google Scholar 

  • Buwalda J G and Goh K M 1982 Host-fungus competition for carbon as a cause of growth depressions in vesicular-arbuscular mycorrhizal ryegrass. Soil Biol. Biochem. 14, 103–106.

    Article  CAS  Google Scholar 

  • Crush J R 1976 Endomycorrhizas and legume growth in some soils of the MacKenzie Basin, Canterbury, New Zealand. N.Z.J. Agric. Res. 19, 473–476.

    Google Scholar 

  • Daughtridge A T, Pallardy S G, Garret H G and Sander I L 1986 Growth analysis of mycorrhizal and non-mycorrhizal black oak (Quercus velutina Lam.) seedlings. New Phytol. 103, 473–480.

    Article  Google Scholar 

  • Ekwebelam S A and Reid C P P 1983 Effect of light, nitrogen fertilization, and mycorrhizal fungi on growth and photosynthesis of lodgepole pine seedlings. Can. J. For. Res. 11, 1099–1106.

    Google Scholar 

  • Gibson F, Frances M F and Deacon J W 1988 Effects of microwave treatment of soil on growth of birch (Betula pendula) seedlings and infection of them by ectomycorrhizal fungi. New Phytol. 108, 189–204.

    Article  Google Scholar 

  • Graham J H and Syvertsen J P 1984 Influence of vesicular-arbuscular mycorrhiza on the hydraulic conductivity of roots of two citrus rootstocks. New Phytol. 97, 277–284.

    Article  Google Scholar 

  • Graham J H and Syvertsen J P 1985 Host determinants of mycorrhizal dependency of citrus rootstock seedlings. New Phytol. 101, 667–676.

    Article  Google Scholar 

  • Hall I R 1975 Endomycorrhizas ofMetrosideros umbellata andWeinmannia racemosa. N.Z.J. Bot. 13, 463–472.

    Google Scholar 

  • Hardie K and Leyton L 1981 The influence of vesicular-arbuscular mycorrhiza on growth and water relations of red clover. I. In phosphate deficient soil. New Phytol. 89, 599–608.

    Article  Google Scholar 

  • Harley J L and Smith S E 1983 Mycorrhizal Symbiosis. London, Academic Press.

    Google Scholar 

  • Hayman D S 1986 Mycorrhizae of nitrogen-fixing legumes. MIRCEN J. Appl. Microbiol. Biotech. 2, 121–145.

    Article  Google Scholar 

  • Henderson J C and Davies F T Jr 1990 Drought acclimation and the morphology of mycorrhizalRosa hybrida L. cv. ‘Ferdy’ is independent of leaf elemental content. New Phytol. 115, 503–510.

    Article  CAS  Google Scholar 

  • Hewlett J D and Kramer J P 1963 The measurement of water deficits in broad leaf plants. Protoplasma 57, 381–391.

    Article  CAS  Google Scholar 

  • Ho I and Trappe J M 1973 Translocation of14C fromFestuca plants to endomycorrhizal fungi. Nature-New Biol. 244, 30–31.

    Article  PubMed  CAS  Google Scholar 

  • Huang R S, Smith W K and Yost R S 1985 Influence of vesicular-arbuscular mycorrhiza on growth, water relations, and leaf orientation inLeucaena leucocephala (Lam.) de Wit. New Phytol. 99, 229–243.

    Article  Google Scholar 

  • International Institute of Tropical Agriculture (IITA) 1982 Selected Methods for Soil and Plant Analysis. Manual Series No. 7, IITA, Nigeria.

    Google Scholar 

  • Kang B T and Wilson G F 1987 The development of alley farming as a promising agroforestry technology.In Agroforestry: A Decade of Development. Eds. H A Steppler and P K R Nair. pp 227–243. ICRAF, Nairobi, Kenya.

    Google Scholar 

  • Koide R 1985 The nature of growth depressions in sunflower caused by vesicular-arbuscular mycorrhizal infection. New Phytol. 99, 449–462.

    Article  Google Scholar 

  • Kottke I and Oberwinkler F 1986 Mycorrhiza of forest trees: Structure and function. Trees 1, 1–24.

    Article  Google Scholar 

  • Kozlowski TT 1982 Water supply and tree growth. Part I. Water deficits. For. Abstr. 43, 57–95.

    Google Scholar 

  • Kramer P J and Kozlowski T T 1979 Physiology of Woody Plants. Academic Press, New York, London.

    Google Scholar 

  • Kucey R M N and Paul E A 1982 Carbon flow, photosynthesis and N2 fixation in mycorrhizal and nodulated fababeans (Vicia faba L.). Soil Biol. Biochem. 14, 407–412.

    Article  Google Scholar 

  • Levy Y and Krikun J 1980 Effect of vesicular-arbuscular mycorrhiza onCitrus jambhiri water relations. New Phytol. 85, 25–36.

    Article  Google Scholar 

  • Mcgonigle T P, Miller M H, Evans D G, Fairchild G L and Swan J A 1990 A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol. 115, 495–502.

    Article  Google Scholar 

  • Marschner H 1986 Mineral Nutrition of Higher Plants. Academic Press, London.

    Google Scholar 

  • Mejstrik V K 1975 The effect of mycorrhizal infection ofPinus sylvestris andPicea abies by twoBoletus species on the accumulation of phosphorus. New Phytol. 74, 455–459.

    Article  CAS  Google Scholar 

  • Menge J A, Johnson E L V and Platt R G 1978 Mycorrhizal dependency of several citrus cultivars under three nutrient regimes. New Phytol. 81, 553–559.

    Article  CAS  Google Scholar 

  • Michelsen A and Rosendahl S 1990 The effect of VA mycorrhizal fungi, phosphorus and drought stress on the growth ofAcacia nilotica andLeucaena leucocephala seedlings. Plant and Soil 124, 7–13.

    Article  CAS  Google Scholar 

  • Mosse B 1973 Plant growth responses to vesicular-arbuscular mycorrhiza. IV. In soils given additional phosphate. New Phytol. 72, 127–136.

    Article  Google Scholar 

  • Mulongoy K, Callens A and Okogun J A 1988 Differences in mycorrhizal infection and P uptake of sweet potato cultivars (Ipomea batata L.) during their early growth in three soils. Biol. Fertil. Soils 7, 7–10.

    Article  Google Scholar 

  • Nelsen C E and Safir G R 1982 Increased drought tolerance of mycorrhizal onion plants caused by improved phosphorus nutrition. Planta 154, 407–413.

    Article  CAS  Google Scholar 

  • Osonubi O 1989 Osmotic adjustment in mycorrhizalGmelina arborea Roxb. seedlings. Func. Ecol. 3, 143–151.

    Article  Google Scholar 

  • Osonubi O, Okon I E and Bamiduro T A 1990 Effect of different fungal inoculation periods on performance ofGmelina seedlings under dry soil conditions. For. Ecol. Manage. 37, 223–232.

    Article  Google Scholar 

  • Pachlewski R 1967 Investigations on pure culture of mycorrhizal fungi of pine (Pinus sylvestris L.). Forest Research Institute, Warsaw, 193 p.

    Google Scholar 

  • Parke J L, Linderman R G and Black C H 1983 The role of ectomycorrhizas in drought tolerance of Douglas-fir seedlings. New Phytol. 95, 83–95.

    Article  Google Scholar 

  • Pope P E, Chaney W R, Rhodes J D and Weedhead S H 1983 The mycorrhizal dependency of four hardwood tree species. Can. J. Bot. 61, 412–417.

    Google Scholar 

  • Prichard J M and Forseth I N 1988 Rapid leaf movement, microclimate, and water relations of two temperate legumes in three contrasting habitats. Am. J. Bot. 75, 1201–1211.

    Article  Google Scholar 

  • Read D J and Boyd R C 1986 Water relations of mycorrhizal fungi and their host plants.In Water, Fungi and Plants. Eds. P G Ayres and L Boddy, pp. 287–303. Cambridge University Press, Cambridge.

    Google Scholar 

  • Redhead J F 1982 Ectomycorrhizae in the tropics.In Microbiology of Tropical Soils and Plant Productivity. Eds. Y R Dommergues and H G Diem. pp. 253–269. Nijhoff/Junk Publishers, The Hague, The Netherlands.

    Google Scholar 

  • Reid C P P, Kidd F A and Ekwebelam S A 1983 Nitrogen nutrition, photosynthesis and carbon allocation in ectomycorrhizal pine. Plant and Soil 71, 415–432.

    Article  CAS  Google Scholar 

  • Rhodes L H and Gerdemann J W 1980 Nutrient translocation in vesicular-arbuscular mycorrhizae.In Cellular Interactions in Symbiosis and Parasitism. Eds. C B Cook, P W Pappas and E D Rudolph. pp 173–195. Ohio State University Press, Columbus.

    Google Scholar 

  • Smith S E and Gianinazzi-Pearson V 1988 Physiological interactions between symbionts in vesicular-arbuscular mycorrhizal plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39, 221–244.

    Article  CAS  Google Scholar 

  • Snellgrove R C, Splittstosser W E, Stribley D P and Tinker P B 1982 The distribution of carbon and the demand of the fungal symbiont in leek plants with vesicular-arbuscular mycorrhizas. New Phytol. 92, 75–87.

    Article  Google Scholar 

  • Tennant D 1975 A test of modified line intersect method of estimating root length. J. Ecol. 63, 995–1001.

    Article  Google Scholar 

  • Wong K K Y, Piché Y, Montpetit D and Kropp B R 1989 Differences in the colonization ofPinus banksiana roots by sib-monokaryotic and dikaryotic strains of ectomycorrhizalLaccaria bicolor. Can. J. Bot. 67, 1717–1726.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osonubi, O., Mulongoy, K., Awotoye, O.O. et al. Effects of ectomycorrhizal and vesicular-arbuscular mycorrhizal fungi on drought tolerance of four leguminous woody seedlings. Plant Soil 136, 131–143 (1991). https://doi.org/10.1007/BF02465228

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02465228

Key words

Navigation