Skip to main content
Log in

Abstract

All local and asymptotic first approximations of a polynomial, a differential polynomial, and of a system of such polynomials can be selected algorithmically. Here the first approximation of a solution to the system of equations is a solution to the corresponding first approximation of the system of equations. The power transformations induce linear transformations of vector exponents and commute with the operation of selecting first approximations. In the first approximation of a system of equations they allow one to reduce the number of parameters and to reduce the presence of some variables to the form of derivatives of their logarithms. If the first approximation is the linear system, then in many cases the system of equations can be transformed into the normal form by means of the formal change of coordinates. The normal form is reduced to the problem of lower dimension by means of the power transformation. Combining these algorithms, we can resolve a singularity in many problems, find parameters determining the properties of solutions, and obtain the asymptotic expansions of solutions. Some applications from mechanics, celestial mechanics, and hydrodynamics are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. D. Bruno, Local method of nonlinear analysis of differential equations. (Russian)Nauka, Moscow, 1979, English translation: Local methods in nonlinear differential equations.Springer-Verlag, Berlin, 1989.

    MATH  Google Scholar 

  2. A. D. Bruno and A. Soleev, Local uniformization of branches of a space curve, and Newton polyhedra. (Russian)Algebra i Analiz 3 (1991), No. 1, 67–101, English translation:St. Petersburg Math. J. 3 (1992), No. 1, 53–82.

    MathSciNet  Google Scholar 

  3. —, First approximations of algebraic equations. (Russian)Dokl. Ros. Akad. Nauk 335 (1994), No. 3, 277–278. English translation:Russ. Acad. Sci., Dokl. Math. 49 (1994), No. 2, 291–293.

    MATH  MathSciNet  Google Scholar 

  4. A. D. Bruno, The Newton polyhedron in the nonlinear analysis. (Russian)Vestn. Mosk. Univ., Ser. 1. (1995), No. 5, 45–51. English translation:Math. Bull. 50 (1995).

    MathSciNet  Google Scholar 

  5. —, First approximations of differential equations. (Russian)Dokl. Ros. Akad. Nauk 335 (1994), No. 4, 413–416. English translation:Russ. Acad. Sci., Dokl. Math. 49 (1994), No. 2, 334–339.

    MATH  MathSciNet  Google Scholar 

  6. —, General approach to the asymptotic analysis of singular perturbations. In: Dynamical Systems and Chaos, N. Aoki, K. Shiraiwa, and Y. Takahashi, Eds. Vol. 1,World Scientific, Singapore, 1995, 11–17.

    Google Scholar 

  7. A. Soleev and A. B. Aranson, Computation of a polyhedron and of normal cones of its faces. (Russian)Preprint 36,Inst. Appl. Math., Moscow, 1994.

    Google Scholar 

  8. V. Puiseux, Recherches sur les fonctions algebriques,J. Math. Pures et Appl. 15 (1850), 365–480.

    Google Scholar 

  9. I. Newton, A treatise of the method of fluxions and infinite series, with its application to the geometry of curve lines. In: The Mathematical Works of Isaac Newton, Harry Woolf, Ed., Vol. 1.Johnson Reprint Corp., N.Y. and London, 1964, 27–137.

    Google Scholar 

  10. A. D. Bruno, The asymptotic behavior of solutions of nonlinear systems of differential equations. (Russian)Dokl. Akad. Nauk SSSR 143 (1962), No. 4, 763–766. English translation:Sov. Math. Dokl. 3 (1962), 464–467.

    MathSciNet  Google Scholar 

  11. S. G. Gindikin, Energy estimates and Newton polyhedra. (Russian)Trudy Mosk. Mat. Obsc. 31 (1974), 189–236. English translation:Trans. Moscow Math. Soc. 31 (1974), 193–246.

    MATH  MathSciNet  Google Scholar 

  12. A. G. Khovanskii, Newton polyhedra (resolution of singularities). (Russian) In: Itogi Nauki i Tekhniki: Sovremennye Problemy Mat., Vol. 22.VINITI, Moscow 1983, 207–239. English translation:J. Sov. Math. 27 (1984), 2811–2830.

    Google Scholar 

  13. A. D. Bruno, Algorithms of Nonlinear Analysis. (Russian)Uspekhi Mat. Nauk 51 (1996), No. 5, 186. English translation:Russ. Math. Surv. 51 (1996), No. 5.

    MathSciNet  Google Scholar 

  14. A. D. Bruno and A. Soleev, Local uniformization of branches of an algebraic curve.Preprint M 34, I. H. E. S.,Paris, 1990.

    Google Scholar 

  15. A. D. Bruno and V. I. Parusnikov, Comparison of different generalizations of continued fractions. (Russian)Matem. Zametki 61 (1997), No. 3, 339–348. English translation:Math. Notes 61 (1997), No. 3.

    MathSciNet  Google Scholar 

  16. A. D. Bruno, Normal form of differential equations. (Russian)Dokl. Akad. Nauk SSSR 157 (1964), No. 6, 1276–1279. English translation:Sov. Math. Dokl. 5 (1964), 1105–1108.

    MathSciNet  Google Scholar 

  17. —, Analytical form of differential equations. (Russian)Trudy Mosk. Mat. Obshch. 25 (1971), 119–262;26 (1972), 199–239. English translation:Trans. Moscow Math. Soc. 25 (1971), 131–288;26 (1972), 199–239.

    Google Scholar 

  18. J. E. Marsden and M. McCracken, The Hopf bifurcation and its applications.Springer-Verlag, New-York, 1976. Russian translation:Mir, Moscow, 1980.

    MATH  Google Scholar 

  19. A. D. Bruno, Ways of computing a normal form. (Russian)Dokl. Ros. Akad. Nauk 344 (1995), No. 3, 298–300. English translation:Russ. Acad. Sci. Dokl. Math. 52 (1995), 200–202.

    MathSciNet  Google Scholar 

  20. —, The restricted three-body problem. (Russian)Nauka, Moscow, 1990. English translation:Walter de Gruyter, Berlin, 1994.

    MATH  Google Scholar 

  21. M. Henon, Sur les orbites interplanetaires qui rencontrent deux fois la Terre.Bull. Astron., Ser. 3. 3 (1968), No. 3, 377–402.

    MATH  Google Scholar 

  22. A. D. Bruno, On periodic flights round the moon. (Russian)Preprint 91,Inst. Appl. Math., Moscow, 1978. English translation: On periodic flybys of the moon.Celest. Mech. 24 (1981), No. 3, 255–268.

    Google Scholar 

  23. —, A general approach to the study of complex bifurcations. (Russian)Prikladnaja Mekh. 28 (1992); No. 12, 83–86. English translation:Int. Appl. Mech. 28 (1993), No. 12, 849–853.

    MathSciNet  Google Scholar 

  24. —, Singular perturbations in Hamiltonian mechanics. In: Hamiltonian Mechanics, J. Seimenis, Ed.Plenum Press, New York, 1994, 43–49.

    Google Scholar 

  25. M. Henon and M. Guyot, Stability of periodic orbits in the restricted problem. In: Periodic Orbits, Stability and Resonances, G. E. O. Giacaglia, Ed.,Reidel, Dordrecht, 1970, 349–374.

    Google Scholar 

  26. A. D. Bruno and A. Soleev, The Hamiltonian truncations of a Hamiltonian system. (Russian)Preprint 55,Inst. Appl. Math., Moscow, 1995.

    Google Scholar 

  27. —, Newton polyhedra and Hamiltonian systems. (Russian)Vestnik Mosk. Univ., Ser. 1. (1995), No. 6, 84–86. English translation:Math. Bull. 50 (1995).

    MathSciNet  Google Scholar 

  28. —, Hamiltonian truncated systems of a Hamiltonian system. (Russian)Dokl. Ros. Akad. Nauk 349 (1996), No. 2, 153–155. English translation:Russ. Acad. Sci. Dokl. Math. 54 (1996), No. 1, 512–514.

    MathSciNet  Google Scholar 

  29. A. D. Bruno, Simple (double, multiple) periodic solutions of the restricted three-body problem in the Sun-Jupiter case. (Russian)Preprints 66, 67, 68,Inst. Appl. Math., Moscow, 1993.

    Google Scholar 

  30. —, Zero-multiple and retrograde periodic solutions of the restricted three-body problem. (Russian)Preprint 93,Inst. Appl. Math., Moscow, 1996.

    Google Scholar 

  31. A. D. Bruno and V. Yu. Petrovich, Computation of periodic oscillations of a satellite. Singular case. (Russian)Preprint 44,Inst. Appl. Math., Moscow, 1994.

    Google Scholar 

  32. A. D. Bruno and V. P. Varin, First (second) limit problem for the equation of oscillations of a satellite. (Russian)Preprints 124, 128,Inst. Appl. Math., Moscow, 1995.

    Google Scholar 

  33. —, Limit problems for the equation of oscillations of a satellite,Celest. Mech. 67 (1997), No. 1, 1–40.

    Article  MATH  MathSciNet  Google Scholar 

  34. A. D. Bruno and V. Yu. Petrovich, Regularization of oscillations of a satellite on a very stretched orbit. (Russian)Preprint 4,Inst. Appl. Math., Moscow, 1994.

    Google Scholar 

  35. V. Varin, The critical families of periodic solutions of the equation of oscillations of a satellite. (Russian)Preprint 101,Inst. Appl. Math., Moscow, 1996.

    Google Scholar 

  36. —, The critical subfamilies of the familyK 0 of periodic solutions of the equation of oscillations of a satellite. (Russian)Preprint 20,Inst. Appl. Math., Moscow, 1997.

    Google Scholar 

  37. S. Yu. Sadov, Normal form of the equation of oscillations of a satellite in a singular case. (Russian)Mat. Zametki 58 (1995), No. 5, 785–789. English translation:Math. Notes 58 (1995), No. 5, 1234–1237.

    MATH  MathSciNet  Google Scholar 

  38. —, Higher approximations of the method of averaging for the equation of plane oscillations of a satellite. (Russian)Preprint 48,Inst. Appl. Math., Moscow, 1996.

    Google Scholar 

  39. G. Iooss and K. Kirchgaessner, Water waves for small surface tension: An approach via normal form.Proc. Royal Soc. Edinburgh 122A (1992), 267–299.

    Google Scholar 

  40. V.I. Arnol’d, On matrices depending on parameters. (Russian)Uspekhi Mat. Nauk 26 (1971), No. 2, 101–114. English translation:Russ. Math. Surv. 26 (1971), No. 2, 29–44.

    Google Scholar 

  41. A. Soleev and A. B. Aranson, The first approximation of a reversible system of ordinary differential equations. RussianPreprint 28,Inst. Appl. Math., Moscow, 1995.

    Google Scholar 

  42. A. D. Bruno and A. Soleev, Local analysis of singularity of a reversible system of ordinary differential equations: Simple cases (Russian)Preprint 40,Inst. Appl. Math., Moscow, 1995.

    Google Scholar 

  43. —, Local analysis of singularity of a reversible system of ordinary differential equations: Complex cases. (Russian)Preprint 47,Inst. Appl. Math., Moscow, 1995.

    Google Scholar 

  44. —, Homoclinic solutions of a reversible system of ordinary differential equations. (Russian)Preprint 54,Inst. Appl Math., Moscow, 1995.

    Google Scholar 

  45. G. R. Belitskii, The normal form of local mappings. (Russian)Uspekhi Mat. Nauk 30 (1975), No. 1, 223.

    MATH  MathSciNet  Google Scholar 

  46. J. M. Hammersley and G. Mazarino, Computational aspect of some autonomous differential equations.Proc. Royal Soc. London, Ser. A.424 (1989), 19–37.

    Article  MATH  Google Scholar 

  47. A. D. Bruno and A. Soleev, Local analysis of singularities of a reversible ODE system. (Russian)Uspekhi Mat. Nauk 50 (1995), No. 6, 169–170. English translation:Russ. Math. Surv. 50 (1995), No. 6, 1258–1259.

    MathSciNet  Google Scholar 

  48. —, Bifurcations of solutions in a reversible ODE system. (Russian)Dokl. Ros. Akad. Nauk 345 (1995), No. 5, 590–592. English translation:Russ. Acad. Sci. Dokl. Math. 52 (1995), No. 3, 419–421.

    MATH  MathSciNet  Google Scholar 

  49. A. D. Bruno and M. M. Vasil’ev, Newton polyhedra and the asymptotic analysis of the viscous fluid flow around a flat plate. (Russian)Preprint 44,Inst. Appl. Math., Moscow, 1995.

    Google Scholar 

  50. M. Van Dyke, Perturbation methods in fluid mechanics.Acad. Press, New York, London, 1964. Russian translation:Mir, Moscow, 1967.

    MATH  Google Scholar 

  51. A. D. Bruno, Bifurcation of the periodic solutions in the symmetric case of a multiple pair of imaginary eigenvalues. (Russian) In: Numerical Solution of Ordinary Differential Equations, S. S. Filippov, Ed.Inst. Appl. Math, Moscow, 1988, 161–176. English translation:Selecta Math. (formerlySelecta Mathematica Sovietica)12 (1993), No. 1, 1–12.

    Google Scholar 

  52. —, The normal form of a system, close to a Hamiltonian system. (Russian)Mat. Zametki 48 (1990), No. 5, 35–46. English translation:Math. Notes 48 (1991), No. 5–6, 1100–1108.

    MathSciNet  Google Scholar 

  53. S. Yu. Sadov, On a dynamic system arising from a finite-dimensional approximation of the Schrödinger equation. (Russian)Mat. Zametki 56 (1994), No. 3, 118–133. English translation:Math. Notes 56 (1994), No. 3, 960–971.

    MATH  MathSciNet  Google Scholar 

  54. A. D. Bruno and S. Yu. Sadov, Formal integral of a divergence free system. (Russian)Mat. Zametki 57 (1995), No. 6, 803–813. English translation:Math. Notes 57 (1995), No. 3, 565–572.

    MathSciNet  Google Scholar 

  55. A. D. Bruno and V. Yu. Petrovich, Computation of periodic oscillations of a satellite. (Russian)Mat. Model. (Math. Modelling) 9 (1997), No. 6, 82–94.

    MathSciNet  Google Scholar 

  56. S. Yu. Sadov, Plane motions of a near symmetric satellite about its mass center with rational rotation numbers (Russian)Preprint 31,Inst. Appl. Math., Moscow, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The work was partially supported by Russian Foundation for Basic Research, Grant 96-01-01411.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruno, A.D. Power geometry. Journal of Dynamical and Control Systems 3, 471–491 (1997). https://doi.org/10.1007/BF02463279

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02463279

1991 Mathematics Subject Classification

Key words and phrases

Navigation