Skip to main content
Log in

Effects of survival thresholds upon one-dimensional dynamics of single-species populations

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A simple one-dimensional model of single-species populations is studied by means of computer simulations. Although the model has a rich spectrum of dynamics including chaotic behavior, the introduction of survival thresholds makes the chaotic region so small that it can be hardly observed. Stochastic fluctuations further reduce the chaotic region because they accidentally lead populations to extinction. The model thus naturally explains the observation that the majority of natural populations do not show chaotic behavior but a monotonic return to a stable equilibrium point following a disturbance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Berryman, A. A. and J. A. Millstein. 1989. Are ecological systems chaotic—and if not, why not?Trends Ecol. Evol.,4, 26–28.

    Article  Google Scholar 

  • Conway, E. D. and J. A. Smoller. 1986. Global analysis of a system of predator-prey equations.SIAM J. appl. Math.,46, 630–642.

    Article  MATH  MathSciNet  Google Scholar 

  • Crutchfield, J. P., J. D. Farmer and B. A. Huberman. 1982. Fluctuations and simple chaotic dynamics.Phys. Rep.,92, 45–82.

    Article  MathSciNet  Google Scholar 

  • Feigenbaum, M. J. 1978. Quantitative universality for a class of nonlinear transformations.J. stat. Phys. 19, 25–52.

    Article  MATH  MathSciNet  Google Scholar 

  • Hassell, M. P. 1975. Density dependence in single-species populations.J. Anim. Ecol.,44, 283–295.

    Article  Google Scholar 

  • Hassell, M. P., J. H. Lawton and R. M. May. 1976. Patterns of dynamical behaviour in single-species populations.J. Anim. Ecol. 45, 471–486.

    Article  Google Scholar 

  • Iwasa, Y. and H. Mochizuki. 1988. Probability of population extinction accompanying a temporary decrease of population size.Res. pop. Ecol.,30, 145–164.

    Google Scholar 

  • Lorenz, E. N. 1963. Deterministic nonperiodic flow.J. atmos. Sci.,20, 130–141.

    Article  Google Scholar 

  • May, R. M. 1974. Biological populations with non-overlapping generations: stable points, stable cycles, and chaos.Science 186, 645–647.

    Google Scholar 

  • May, R. M. and G. F. Oster. 1976. Bifurcations and dynamic complexity in simple ecological models.Am. Nat. 110, 573–599.

    Article  Google Scholar 

  • Morris, W. F. 1990. Problems in detecting chaotic behavior in natural populations by fitting simple discrete models.Ecology 71, 1849–1862.

    Article  Google Scholar 

  • Nisbet, R. M. and W. S. C. Gurney. 1982.Modeling Fluctuating Populations. New York, U.S.A.: Wiley.

    Google Scholar 

  • Nisbet, R., S. Blythe, B. Gurney, H. Metz, K. Stokes, A. Lomnicki and G. S. Mani. 1989. Avoiding chaos.Trends Ecol. Evol.,4, 238–240.

    Article  Google Scholar 

  • Odum, H. T. and W. C. Allee. 1954. A note on the stable point of populations showing both interspecific cooperation and disoperation.Ecology 35, 95–97.

    Article  Google Scholar 

  • Pimm, S. L. and A. Redfearn. 1988. The variability of population densities.Nature 334, 613–614.

    Article  Google Scholar 

  • Rössler, O. E., 1976. An equation for continuous chaos.Phys. Lett. 57A, 397–398.

    Google Scholar 

  • Schaffer, W. M. and M. Kot. 1985. Nearly one dimensional dynamics in an epidemic.J. theor. Biol. 112, 403–427.

    Article  MathSciNet  Google Scholar 

  • Schaffer, W. M. and M. Kot. 1986. Differential systems in ecology and epidemiology. InChaos, A. V. Holden (Ed.), pp. 158–178. Manchester, U.K.: Manchester University Press.

    Google Scholar 

  • Schuster, H. G. 1988.Deterministic Chaos: An Introduction, 2nd revised edn. Weinheim, Germany: VCH.

    Google Scholar 

  • Strebel, D. E. 1985. Environmental fluctuations and extinction—single species.Theors. Pop. Biol. 27, 1–26.

    Article  MATH  MathSciNet  Google Scholar 

  • Sugihara, G. and R. M. May. 1990. Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series.Nature 344, 734–741.

    Article  Google Scholar 

  • Turchin, P., P. L. Lorio, Jr., A. D. Taylor and R. F. Billings. 1991. Why do populations of southern pine beetles (Coleoptera: Scolytidae) fluctuate?Environ. Entom. 20, 401–409.

    Google Scholar 

  • Wilson, E. O. and W. H. Bossert. 1971.A Primer of Population Biology. Massachusetts, U.S.A.: Sinauer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masutani, K. Effects of survival thresholds upon one-dimensional dynamics of single-species populations. Bltn Mathcal Biology 55, 1–13 (1993). https://doi.org/10.1007/BF02460292

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460292

Keywords

Navigation