Skip to main content
Log in

The theory and practice of distance geometry

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The mathematics of distance geometry constitutes the basis of a group of algorithms for revealing the structural consequences of diverse forms of information about a macromolecule's conformation. These algorithms are of proven utility in the analysis of experimental conformational data. This paper presents the basic theorems of distance geometry in Euclidean space and gives formal proofs of the correctness and, where possible, of the complexity of these algorithms. The implications of distance geometry for the energy minimization of macromolecules are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Aho, A., J. E. Hopcroft and J. Ullman. 1974.The Design and Analysis of Computer Algorithms. Addison-Wesley, Menlo Park, CA.

    MATH  Google Scholar 

  • Blumenthal, L. M. 1970.Theory and Applications of Distance Geometry. Chelsea, Bronx, NY.

    MATH  Google Scholar 

  • Braun, W., C. Bosch, L. Brown, N. Go and K. Wuthrich. 1981. “Combined Use of Proton/Proton Overhauser Enhancements and a Distance Geometry Algorithm for Determination of Polypeptide Conformations. Application to Micelle Bound Glucagon.”Biochim. Biophys. Acta,667, 377–397.

    Google Scholar 

  • Bremermann, H. 1970. “A Method of Unconstrained Global Optimization.”Math. Biosci. 9, 1–13.

    Article  MATH  MathSciNet  Google Scholar 

  • Carroll, J. D. and P. Arabie. 1980. “Multidimensional Scaling.”Ann. Rev. Psychol 31, 607–649.

    Article  Google Scholar 

  • Chou, P. and G. Fasman. 1978. “Empirical Predictions of Protein Conformation.”Ann. Rev. Biochem. 47, 251–276.

    Article  Google Scholar 

  • Crippen, G. 1977. “A Novel Approach to the Calculation of Conformation: Distance Geometry.”J. comp. Phys.,24, 96–107.

    Article  MATH  MathSciNet  Google Scholar 

  • — 1978. “Rapid Calculation of Coordinates from Distance Matrices.”J. comp. Phys. 26, 449–452.

    Article  MATH  Google Scholar 

  • — 1979a. “Distace Constraints on Macromolecular Conformation. I. The Effectiveness of the Experimental Studies on Tobacco Mosaic Virus Protein.”Int. J. Peptide Protein Res. 13, 320–326.

    Article  Google Scholar 

  • — 1979b. “Distance Geometry Approach to Rationalizing Binding Data.”J. med. Chem. 22, 988–997.

    Article  Google Scholar 

  • — 1980. “Quantitative Structure-Activity Relationships by Distance Geometry: Systematic Analysis of Dihydrofolate Inhibitors.”J. med. Chem. 23, 599–606.

    Article  Google Scholar 

  • — 1981. “Distance Geometry and Conformational Calculations.” InChemometrics Research Studies Series, Ed. D. Bawden. Vol. 1. Research Studies Press, Wiley, New York, NY.

    Google Scholar 

  • — 1982.J. comp. Chem. 3, 471–476.

    Article  Google Scholar 

  • — and T. Havel. 1978. “Stable Calculations of Coordinates from Distance Information.”Acta crystallogr. A34, 282–284.

    Article  Google Scholar 

  • —, N. Oppenheimer and M. Conolly. 1981. “Distance Geometry Analysis of the N.M.R. Evidence on the Solution Conformation of Bleomycin.”Int. J. Peptide Protein Res. 17, 156–169.

    Article  Google Scholar 

  • Dahlquist, G. and A. Bjorck. 1974.Numerical Methods. Prentice-Hall, Engelwood Cliffs, NJ.

    Google Scholar 

  • Dial, R., F. Glover, D. Karney and D. Klingman. 1979. “A Computational Analysis of Alternative Algorithms and Labeling Techniques for Finding Shortest Path Trees.”Networks 9, 215–248.

    MATH  MathSciNet  Google Scholar 

  • Dygert, M., N. Go and H. Scheraga. 1975. “Use of a Symmetry Condition to Compute the Conformation of Gramicidin S1.”Macromolecules 8, 750–761.

    Article  Google Scholar 

  • Eckart, C. and G. Young. 1936. “The Approximation of one Matrix by Another of Lower Rank.”Psychometrica 1, 211–218.

    Article  MATH  Google Scholar 

  • Ferro, D. and J. Hermans. 1977. “A Different Best Rigid-body Molecular Fit Routine.”Acta Crystallogr.A33, 345–347.

    Article  Google Scholar 

  • Flory, P. J. 1969.The Statistical Mechanics of Chain Molecules. Wiley Interscience, New York.

    Google Scholar 

  • Goel, N. and M. Ycas. 1979. “On the Computation of the Tertiary Structure of Globular Proteins. II.”J. theor. Biol. 77, 253–305.

    Article  Google Scholar 

  • Havel, T. 1982. “The Combinatorial Distance Geometry Approach to the Calculation of Molecular Conformation.” Ph.D. Dissertation, Group in Biophysics, U.C. Berkeley, CA.

    Google Scholar 

  • —, G. Crippen and I. Kuntz. 1979. “Effects of Distance Constraints on Macromolecular Conformation. II. Simulation of Experimental Results and Theoretical Predictions.”Biopolymers 18, 73–81.

    Article  Google Scholar 

  • Hermans, J., D. Ferro, J. McQueen and S. Wei. 1976. InEnvironmental Effects on Molecular Structure and Properties, Ed. B. Pullman, pp. 459–483. D. Reidel, Dordrecht.

    Google Scholar 

  • Klapper, M. and D. DeBrotta. 1980. “Use of Caley-Menger Determinants in the Calculation of Molecular Structures.”J. comp. Phys. 37, 56–69.

    Article  MATH  Google Scholar 

  • Kuntz, I. 1975. “An Approach to the Tertiary Structure of Globular Proteins.”J. Am. Chem. Soc. 97, 4362–4366.

    Article  Google Scholar 

  • — and G. Crippen. 1980. “A Computer Model for the 30S Ribosome Subunit.”Biophys. J. 32, 677–696.

    Article  Google Scholar 

  • —— and P. Kollman. 1979. “Application of Distance Geometry to Protein Tertiary Structure Calculations.”Biopolymers 18, 939–957.

    Article  Google Scholar 

  • ——— and D. Kimelman. 1976. “Calculation of Protein Tertiary Structure.”J. mol. Biol. 106, 983–994.

    Article  Google Scholar 

  • Langridge, R., T. Ferrin, I. Kuntz and M. Connolly. 1981. “Real-time Color Graphics in Studies of Molecular Interactions.”Science 211, 661–666.

    Google Scholar 

  • Lawler, E. 1976.Combinatorial Optimization, Networks and Matroids. Holt, Rinehart and Winston, San Francisco, CA.

    MATH  Google Scholar 

  • Luenberger, D. G. 1969.Optimization by Vector Space Methods. Addison-Wesley, Menlo Part, CA.

    MATH  Google Scholar 

  • — 1973.Introduction to Linear and Nonlinear Programming. Addison-Wesley, Menlo Park, CA.

    MATH  Google Scholar 

  • Mackay, A. 1974. “Generalized Structural Geometry.”Acta Crystallogr. A30, 440–447.

    Article  Google Scholar 

  • Marshall, G. R., C. D. Barry, H. E. Bosshard, R. A. Dammkoehler and D. A. Dunn. 1979. “The Conformational Parameter in Drug Design: the Active Analog Approach.” InComputer Assisted Drug Design No. 112, Ed. E. C. Olson and R. E. Christofferson, pp. 205–226. American Chemical Society, Washington, DC.

    Google Scholar 

  • Nemethy, G. and H. Scheraga. 1977. “Protein Folding.”Quart. Rev. Biophys. 10, 239–352.

    Article  Google Scholar 

  • Nishikawa, K. and T. Ooi. 1973. “Comparison of Homologous Tertiary Structures of Proteins.” InConformation of Biological Molecules and Polymers, Ed. E. D. Bergeman and B. Pullman, pp. 173–187. Academic Press, New York.

    Google Scholar 

  • Phillips, D. C. 1970. “The Development of Crystallographic Enzymology.” InBritish Biochemistry, Past and Present, Ed. T. W. Goodman, pp. 11–28. Academic Press, London.

    Google Scholar 

  • Rossman, M. and A. Liljas. 1974. “Recognition of Structural Domains in Globular Proteins.”J. mol. Biol. 85, 177.

    Article  Google Scholar 

  • Schulz, G. E. 1981. “Protein Differentiation: Emergence of Novel Proteins during Evolution.”Angew. Chem. (Int. Edn.) 20, 143–151.

    Article  Google Scholar 

  • Shepard, R. N. 1980. “Multidimensional Scaling, Tree Fitting, and Clustering.”Science 210, 390–398.

    MathSciNet  Google Scholar 

  • Weiner, P., P. Kollman, G. Wipff, S. Profeta, I. Kuntz and T. Havel. 1982. “A Distance Geometry Study of Ring Systems: Application to Cyclooctane, 18-Crown-6; Cyclododecane and Androstanedione.”Tetrahedron. Submitted.

  • Wüthrich, K., G. Wider, G. Wagner and W. Braun. 1982. “Sequential Resonance Assignments as a Basis for Determination of Spatial Protein Structures by High Resolution Proton Nuclear Magnetic Resonance.”J. mol. Biol. 155, 311–319.

    Article  Google Scholar 

  • Ycas, M., N. Goel and J. Jacobsen. 1978. “On the Computation of the Tertiary Structure of Globular Proteins.”J. theor Biol. 72, 443–457.

    Article  Google Scholar 

  • Young, G. and A. Householder. 1938. “Discussion of a Set of Points in Terms of their Mutual Distances.”Psychometrica 3, 19–22.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Havel, T.F., Kuntz, I.D. & Crippen, G.M. The theory and practice of distance geometry. Bltn Mathcal Biology 45, 665–720 (1983). https://doi.org/10.1007/BF02460044

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460044

Keywords

Navigation