Skip to main content
Log in

Stochastic theory of population genetics

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Stochastic models of population genetics are studied with special reference to the biological interest. Mathematical methods are described for treating some simple models and their modifications aimed at the problems of the molecular evolution. Unified theory for treating different quantities is extensively developed and applied to some typical problems of current interest in genetics. Mathematical methods for treating geographically structured populations are given. Approximation formulae and their accuracy are discussed. Some criteria are given for a structured population to behave almost like a panmictic population of the same total size. Some quantities are shown to be independent of the geographical structure and their dynamics are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Arnold, L. 1973.Stochastic Differential Equations: Theory and Applications. New York: John Wiley & Sons.

    Google Scholar 

  • Crow, J. F. and M. Kimura. 1970.An Introduction to Population Genetics Theory. New York: Harper and Row.

    MATH  Google Scholar 

  • Dynkin, E. B. 1965.Markov Processes, Vols 1 and 2. Berlin: Springer-Verlag.

    MATH  Google Scholar 

  • Ethier, S. N. and T. Nagylaki. 1980. “Diffusion Approximations of Markov Chains with Two Time Scales and Applications to Population Genetics.”Adv. appl. Prob. 12, 14–49.

    Article  MATH  MathSciNet  Google Scholar 

  • Ewens, W. J. 1963. “The Diffusion Equation and a Pseudo-distribution in Genetics.Jl R. statist. Soc. (B) 25, 405–412.

    MATH  MathSciNet  Google Scholar 

  • — 1979.Mathematical Population Genetics. Berlin: Springer-Verlag.

    MATH  Google Scholar 

  • Feller, W. 1951. “Diffusion Processes in Genetics.”Proc. 2nd Berkeley Symp. on Math. Stat. and Prob., pp. 227–246.

  • — 1954. “Diffusion Processes in One Dimension.”Trans Am. math. Soc. 77, 1–31.

    Article  MATH  MathSciNet  Google Scholar 

  • Fisher, R. A. 1922. “On the Dominance Ratio”.Proc. R. Soc. Edinburgh 42, 321–341.

    Google Scholar 

  • Itô, K. and H. P. McKean. 1965.Diffusion Processes and Their Sample Paths. Berlin: Springer-Verlag.

    MATH  Google Scholar 

  • Itoh, Y. 1979. “Random Collision Process of Oriented Graph.” Institute of Statistical Mathematics (Japan), Research Memorandum No. 154, pp. 1–20.

  • Kimura, M. 1954. “Process Leading to Quasi-fixation of Genes in Natural Populations due to Random Fluctuation of Selection Intensities.Genetics 39, 280–295.

    Google Scholar 

  • — 1955a. “Solution of a Process of Random Genetic Drift with a Continuous Model.”Proc. natn. Acad. Sci. U.S.A. 41, 144–150.

    Article  MATH  Google Scholar 

  • — 1955b. “Stochastic Processes and Distribution of Gene Frequencies under Natural Selections”.Cold Spring Harb. Symp. quant. Biol. 20, 33–53.

    Google Scholar 

  • — 1962. “On the Probability of Fixation of Mutant Genes in a Population.”Genetics 47, 713–719.

    Google Scholar 

  • — 1964. “Diffusion Models in Population Genetics.”J appl. Prob. 1, 177–232.

    Article  MATH  Google Scholar 

  • — 1968. “Evolutionary Rate at the Molecular Level”.Nature, Lond. 217, 624–626.

    Article  Google Scholar 

  • — 1980. “Average Time until Fixation of a Mutant Allele in a Finite Population under Mutation Pressure: Studies by Analytical, Numerical and Pseudo-sampling Methods.”Proc. natn Acad. Sci. U.S.A. 77, 522–526.

    Article  MATH  Google Scholar 

  • — and J. F. Crow. 1964. “The Number of Alleles that can be Maintained in a Finite Population.”Genetics 49, 725–728.

    Google Scholar 

  • — and T. Ohta. 1969. “The Average Number of Generations until Fixation of an Individual Mutant Gene in a Finite Population.”Genetics 63, 701–709.

    Google Scholar 

  • — and —. 1971. “Protein Polymorphism as a Phase of Molecular Evolution.”Nature, Lond. 229, 467–469.

    Article  Google Scholar 

  • Kolmogorov, A. 1935. “Deviations from Hardy’s Formula in Partial Isolation.”C. r. Acad. Sci. U.R.S.S. 3, 129–132.

    MATH  Google Scholar 

  • Li, W.-H. 1973. “Total Number of Individuals Affected by a Single Deleterious Mutant in a Finite Population.”Am. J. Human. Genet. 241, 667–679.

    Google Scholar 

  • — 1978. “Maintenance of Genetic Variability under the Joint Effect of Mutation, Selection and Random Drift.”Genetics 90, 349–382.

    MathSciNet  Google Scholar 

  • Maruyama, T. 1972. “The Average Number and the Variance of Generations at a Particular Gene Frequency in the Course of Fixation of a Mutant Gene in a Finite Population.”Genet. Res. 19, 109–113.

    Article  Google Scholar 

  • — 1974. “The Age of an Allele in a Finite Population.”Genet. Res.,23, 137–143.

    Google Scholar 

  • — 1977.Lecture Notes in Biomathematics 17. Stochastic Problems in Population Genetics. Berlin: Springer-Verlag.

    Google Scholar 

  • — 1980. “On an Overdominant Model of Population Genetics.”Adv. appl. Prob. 12, 274–275.

    Article  Google Scholar 

  • — 1981. “Stochastic Problems in Population Genetics: Applications of Itô’s Stochastic Integrals.” InSto chastic Nonlinear Systems, Eds. L. Arnold and R. Lefever, pp. 154–161. Berlin: Springer-Verlag.

    Google Scholar 

  • Maruyama, T. and P. A. Fuerst. “Analyses of the Age of Genes and the First Arrival Times in a Finite Population.”Genetics. In press.

  • — and Kimura, M. 1971. “Some Methods for treating Continuous Stochastic Processes in Population Genetics.”Jap. J. Genet. 46, 407–410.

    Google Scholar 

  • — and — 1975. “Moments for Sum of an Arbitrary Function of Gene Frequency along a Stochastic Path of Gene Frequency Change.”Proc. natn Acad. sci. U.S.A. 72, 1602–1604.

    Article  MATH  MathSciNet  Google Scholar 

  • — and M. Nei. 1981. “Genetic Variability maintained by Mutation and Overdominant Selection in Finite Populations.”Genetics 98, 491–459.

    MathSciNet  Google Scholar 

  • — and N. Takahata. 1981. “Numericl Studies of the Frequency Trajectories in the Process of Fixation of Null Genes at Duplicated Loci.Heredity 46, 49–57.

    Google Scholar 

  • McShane, E. J. 1974.Stochastic Calculus and Stochastic Models. New York: Academic Press.

    MATH  Google Scholar 

  • Nagasawa, M. 1964. “Time Reversions of Markov Processes.”Nagoya math. J. 24, 177–204.

    MATH  MathSciNet  Google Scholar 

  • — and Maruyama, T. 1979. “An Application of Time Reversal of Markov Processes to a Problem of Population Genetics.”Adv. appl. Prob. 11, 457–478.

    Article  MATH  MathSciNet  Google Scholar 

  • Nagylaki, T. 1974. “The Moments of Stochastic Integrals and the Distribution of Sojourn Times.”Proc. natn Acad. Sci. U.S.A. 71, 746–749.

    Article  MathSciNet  Google Scholar 

  • Nei, M. 1975.Molecular Population Genetics and Evolution. New York: North-Holland/American Elsevier.

    Google Scholar 

  • Pederson, D. G. 1973. “Note: An Approximation Method of Sampling a Multinomial Population.”Biometrics 29, 814–821.

    Article  Google Scholar 

  • Robertson, A. 1964. “The Effect of Non-random Mating within Inbred Lines on the Rate of Inbreeding.”Genet. Res. 5, 164–167.

    Google Scholar 

  • Rumelin, W. 1980. “Numerical Treatment of Stochastic Differential Equations. Report No. 12, Forschungsschwerpunkt Dynamische Systeme, Universität Bremen.

  • Skorokhod, A. V., 1965.Studies in the Theory of Random Processes. Reading, MA: Addison Wesley.

    MATH  Google Scholar 

  • Slatkin, M. 1981. “Fixation Probability and Fixation Times in a Subdivided Population.”Evolution 35, 477–488.

    Article  Google Scholar 

  • Watanabe S. 1971. “On the Stochastic Differential Equations for Multidimensional Diffusion Process with Boundary Conditions”.J. Math. Kyoto Univ. 11, 169–180.

    MATH  MathSciNet  Google Scholar 

  • Watterson, G. A. 1977. “Heterosis or Neutrality?”Genetics 85, 789–814.

    MathSciNet  Google Scholar 

  • Wong, E. and M. Zakai. 1965. “On the Convergence of Ordinary Integrals to Stochastic Integrals.”Ann. math. Statist. 36, 1560–1564.

    MATH  MathSciNet  Google Scholar 

  • Wright, S. 1931. “Evolution in Mendelian Populations.”Genetics 16, 97–159.

    Google Scholar 

  • — 1945. “Differential Equations of the Distribution of Gene Frequencies.”Proc. natn Acad. Sci. U.S.A. 31, 382–389.

    Article  MATH  Google Scholar 

  • Wright, S. 1948. “Genetics of Populations.” InEncyclopedia Britannica, Vol. 10, 111, 111A-D, 112.

  • — 1949. “Adaptation and Selection.” InGenetics, Paleontology, and Evolution, Ed. G. G. Simpson, G. L. Jepsen and E. Mayr, pp. 365–389. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • — 1969.Evolution and Genetics of Populations, Vol. 2. The Theory of Gene Frequencies. Chicago, IL: University of Chicago Press.

    Google Scholar 

  • — 1970. “Tandom Drift and the Shifting Balance Theory or Evolution.” InMathematical Topics in Population Genetics, Ed. K. Kojima, pp. 1–31. Berlin: Springer-Verlag.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maruyama, T. Stochastic theory of population genetics. Bltn Mathcal Biology 45, 521–554 (1983). https://doi.org/10.1007/BF02459586

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02459586

Keywords

Navigation