Skip to main content
Log in

Discussion: Electrical excitability of cells, theory and experiment: Review of the Hodgkin-Huxley foundation and an update

  • Neurophysiology
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature

  • Bernstein, J. 1902. Untersuchungen zur Thermodynamik der bioelektrischen Ströme. Erster Theil.Pflügers Arch. 82 521–562.

    Article  Google Scholar 

  • Cohen, A.H., S. Rossignol and S. Grillner (eds). 1988.Neural Control of Rhythmic Movements in Vertebrates. New York: Wiley.

    Google Scholar 

  • Cole, K.S. and H.J. Curtis. 1939. Electric impedance of the squid giant axon during activity.J. gen. Physiol. 22 49–670.

    Google Scholar 

  • Cole, K.S. 1968.Membranes, Ions, and Impulses. Berkeley, CA: University of California Press.

    Google Scholar 

  • Cole, K.S., R. Guttman and F. Bezanilla. 1970. Nerve excitation without threshold.Proc. natl Acad. Sci. U.S.A. 65 884–891.

    Article  Google Scholar 

  • Corey, D.P. 1983. Patch clamp: current excitement in membrane physiology.Neurosci. Commentar. 1 99–110.

    Google Scholar 

  • Curtis, H.J. and K.S. Cole. 1940. Membrane action potentials from the squid giant axons.J. cell. comp. Physiol. 15 147–157.

    Article  Google Scholar 

  • Degn, H., A.V. Holden and L.F. Olsen (eds.). 1987.Chaos in Biological Systems. New York: Plenum Press.

    Google Scholar 

  • FitzHugh, R. 1960. Thresholds and plateaus in the Hodgkin-Huxley nerve equations.J. gen. Physiol. 43 867–896.

    Article  Google Scholar 

  • FitzHugh, R. 1961. Impulses and physiological states in models of nerve membrane.Biophys. J. 1 445–466.

    Google Scholar 

  • Goldstein, S.S. and W. Rall. 1974. Changes of action potential shape and velocity for changing core conductor geometry.Biophys. J. 14 731–757.

    Google Scholar 

  • Guttman, R., S. Lewis and J. Rinzel. 1980. Control of repetitive firing in squid axon membrane as a model for a neuroneoscillator.J. Physiol. (London) 305 377–395.

    Google Scholar 

  • Hille, B., 1984.Ionic Channels of Excitable Membranes. Stamford, CT: Sinauer.

    Google Scholar 

  • Hodgkin, A.L. and B. Katz. 1949. The effect of sodium ions on the electrical activity of the giant axon of the squid.J. Physiol. (London) 108 37–77.

    Google Scholar 

  • Hodgkin, A.L. and A.F. Huxley. 1939. Action potentials recorded from inside a nerve fibre.Nature 144 710–711.

    Google Scholar 

  • Hodgkin, A.L. 1976. Chance and design in electrophysiology: an informal account of certain experiments on nerve carried out between 1934 and 1952.J. Physiol. (London) 263 1–21.

    Google Scholar 

  • Hudspeth, A.J. and R.S. Lewis. 1988. A model for electrical resonance and frequency tuning in saccular hair cells of the bull-frog,Rana catesbeiana.J. Physiol. (London) 400 275–297.

    Google Scholar 

  • Huxley, A.F. 1959. Can a nerve propagate a subthreshold disturbance?.J. Physiol. (London) 148 80–81P.

    Google Scholar 

  • Jack, J.J.B., D. Noble and R.W. Tsein. 1975.Electric Current Flow in Excitable Cells. Oxford University Press.

  • Khodorov, B.I. 1974.The Problem of Excitability; Electribility and Ionic Permeability of the Nerve Membrane. New York: Plenum Press.

    Google Scholar 

  • Koch, C. and I. Segey (eds). 1989.Methods in Neuronal Modeling: From Synapses to Networks. Cambridge, MA: MIT Press.

    Google Scholar 

  • Llinás, R.R. 1988. The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function.Science 242 1654–1664.

    Google Scholar 

  • Nagumo, J.S., A. Arimoto and S. Yoshizawa. 1962. An active pulse transmission line simulating nerve axon.Proc. IRE 50 2061–2070.

    Google Scholar 

  • Rall, W. and I. Segev. 1987. Functional possibilities for synapses on dendrites and on dendritic spines. InSynaptic Function, G.M. Edelman, W.E. Gall and W.M. Cowan (eds). New York: Wiley.

    Google Scholar 

  • Rinzel, J. and J.B. Keller. 1973. Traveling wave solutions of a nerve conduction equation.Biophys. J. 13 1313–1337.

    Google Scholar 

  • Rinzel, J. 1981. Models in neurobiology. InMathematical Aspects of Physiology, F.C. Hoppensteadt (ed.):Lectures in Applied Math., Vol. 19. Providence, RI: American Mathematical Society.

    Google Scholar 

  • Rinzel, J. 1987. A formal classification of bursting mechanisms in excitable systems. InMathematical Topics in Population Biology, Morphogenesis, and Neurosciences, E. Teramoto and M. Yamaguti (eds):Lecture Notes in Biomathematics, Vol. 71. Berlin: Springer-Verlag.

    Google Scholar 

  • Sherman, A, J. Rinzel and J. Keizer. 1988. Emergence of organized bursting in clusters of pancreatic β-cells by channel sharing.Biophys. J. 54 411–425.

    Article  Google Scholar 

  • Tyson, J.J. and J.P. Keener. 1988. Singular perturbation theory of traveling waves in excitable media.Physica D32 327–361.

    Article  MATH  MathSciNet  Google Scholar 

  • Winfree, A.T. 1987.When Time Breaks Down. Princeton University Press.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper has been reproduced directly from disc using a LA-TEX system.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rinzel, J. Discussion: Electrical excitability of cells, theory and experiment: Review of the Hodgkin-Huxley foundation and an update. Bltn Mathcal Biology 52, 3–23 (1990). https://doi.org/10.1007/BF02459567

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02459567

Keywords

Navigation