Skip to main content
Log in

Conflicting objectives in chemotherapy with drug resistance

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A system of differential equations for the control of tumor cells growth in a cycle nonspecific chemotherapy is presented. Spontaneously acquired drug resistance is accounted for, as well as the evolution in time of normal cells. In addition, optimization of conflicting objectives forms the aim of the chemotherapeutic treatment. For general cell growth, some results are given, whereas for the special case of Malthusian (exponential) growth of tumor cells and rather general growth rate for normal cells, the optimal strategy is worked out. The latter, from the clinical standpoint, corresponds to maximum drug concentration throughout the treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Coldman, A. J. and J. H. Goldie. 1983. A model for the resistance of tumor cells to cancer chemotherapeutic agents.Math. Biosci. 65, 291–307.

    Article  MATH  Google Scholar 

  • Coldman, A. J. and J. H. Goldie. 1986. A stochastic model for the origin and treatment of tumors containing drug-resistant cells.Bull. Math. Biol. 48, 279–292.

    Article  MATH  MathSciNet  Google Scholar 

  • Costa, M. I. S., J. L. Boldrini and R. C. Bassanezi. 1992. Optimal chemical control of populations developing drug resistance.IMA J. Math. Appl. Med. Biol. 9, 215–226.

    MATH  MathSciNet  Google Scholar 

  • Costa, M. I. S., J. L. Boldrini and R. C. Bassanezi. 1994. Optimal chemotherapy: a case study with drug resistance, saturation effect and toxicity.IMA J. Math. Appl. Med. Biol. 11, 45–59.

    MATH  Google Scholar 

  • Costa, M. I. S., J. L. Boldrini and R. C. Bassanezi. 1995a. Drug kinetics and drug resistance in optimal chemotherapy.Math. Biosc. 125, 191–209.

    Article  MATH  Google Scholar 

  • Costa, M. I. S., J. L. Boldrini and R. C. Bassanezi. 1995b. Chemotherapeutic treatments involving drug resistance and level of normal cells as a criterion of toxicity.Math. Biosci. 125, 211–228.

    Article  MATH  Google Scholar 

  • Costa, M. I. S. and J. L. Boldrini. 1997. Chemotherapeutic treatments: a study of the interplay among drug resistance, toxicity and recuperation from side effects. Unpublished manuscript.

  • Eisen, M. 1978.Mathematical in Cell Biology and Cancer Chemotherapy. Lecture Notes in Biomathematics, Vol. 30. Heidelberg: Springer-Verlag.

    Google Scholar 

  • Goldie, J. H. and A. J. Coldman. 1979. A mathematical model for relating the drug sensitivity of tumors to their spontaneous mutation rate.Cancer Treat. Rep. 63, 1727–1733.

    Google Scholar 

  • Harnevo, L. and Z. Agur. 1992. Drug resistance as a dynamic process in a model for multistep gene amplification under various levels of selection stringency.Cancer Chemother. Pharmacol. 30, 469–476.

    Article  Google Scholar 

  • Kirk, D. 1970.Optimal Control Theory. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Leitmann, G. 1974.Cooperative and Non-Cooperative Many Player Differential Games, International Centre for Mechanical Sciences Course Lectures, No. 190. Udine, Italy: Springer-Verlag.

    Google Scholar 

  • Murray, J. M. 1990a. Optimal control for a cancer chemotherapy problem with general growth and loss functions.Math. Biosci. 98, 273–287.

    Article  MATH  MathSciNet  Google Scholar 

  • Murray, J. M. 1990b. Some optimal control problems in cancer chemotherapy with a toxicity limit.Math. Biosci. 100, 49–67.

    Article  MATH  MathSciNet  Google Scholar 

  • Murray, J. M. 1995. An example of the effects of drug resistance on the optimal schedule for a single drug in cancer chemotherapy.IMA J. Math. Appl. Med. Biol. 12, 55–71.

    MATH  Google Scholar 

  • Skipper, H. E. 1983. The forty year old mutation theory of Luria and Delbruck and its pertinence to cancer chemotherapy.Adv Cancer Research 40, 331–363.

    Article  Google Scholar 

  • Swan, G. W. and T. L. Vincent. 1977. Optimal control analysis in the chemotherapy ofI g G multiple myeloma.Bull. Math. Biol. 39, 317–337.

    Article  MATH  Google Scholar 

  • Swan, G. W. 1987. Tumor growth models and cancer chemotherapy. InCancer Modeling, J. R. Thompson and B. W. Brown (Eds), pp. 91–179 New York: Marcel Dekker.

    Google Scholar 

  • Swan, G. W. 1990. Role of optimal control theory in cancer chemotherapy.Math. Biosc. 101, 237–284.

    Article  MATH  Google Scholar 

  • Vaidya, V. G. and F. J. Alexandro, Jr. 1982. Evaluation of some mathematical models for tumor growth.Int. J. Bio-Med. Comp. 13, 19–35.

    Article  MathSciNet  Google Scholar 

  • Vendite, L. L. 1988.Modelagem matemática para o crescimento tumoral e o problema de resistência celular aos fármacos anti-blásticos. Ph.D. thesis, Faculdade de Engenharia Elétrica, Universidade Estadual de Campinas, SP, Brazil.

    Google Scholar 

  • Zietz, S. and C. Nicolini. 1979. Mathematical approaches to optimization of cancer chemotherapy.Bull. Math. Biol. 41, 305–324.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costa, M.I.S., Boldrini, J.L. Conflicting objectives in chemotherapy with drug resistance. Bltn Mathcal Biology 59, 707–724 (1997). https://doi.org/10.1007/BF02458426

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02458426

Keywords

Navigation