Skip to main content
Log in

Phonon dispersion curves and densities of lithium-intercalated iron phosphorus trisulfide

  • Published:
Il Nuovo Cimento D

Summary

The lattice dynamics of Li-intercalated FePS3 has been studied by means of a force constant model generated by a set of short-range two-body potentials. The intercalated phases have been investigated for the three stoichiometric compositions: Li0.5FePS3, LiFePS3, Li1.5FePS3, with the aim of analysing the evolution of the host lattice normal modes as a function of the concentration, and of finding the dispersion of the new phonon branches induced by lithium. The above special values of lithium concentration have been chosen because the size of the unit cell keeps the same as in the host material. The force constants are fitted to the infrared data and the phonon dispersion curves and the phonon energy densities have been calculated. A spectroscopic method for monitoring lithium migration in the host material is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. H. Thompson andM. S. Whittingham:Mater. Res. Bull.,12, 741 (1977).

    Article  Google Scholar 

  2. A. Le Méhauté, G. Ouvrard, R. Brec andJ. Rouxel:Mater. Res. Bull.,12, 1191 (1977).

    Article  Google Scholar 

  3. R. Clement andM. L. H. Green:J. Chem. Soc. Dalton Trans.,10, 1566 (1979).

    Article  Google Scholar 

  4. R. Brec, D. M. Schleich, G. Ouvrard, A. Louisy andJ. Rouxel:Inorg. Chem.,18, 1814 (1979).

    Article  Google Scholar 

  5. P. J. S. Foot andN. G. Shaker:Mater. Res. Bull.,18, 173 (1983).

    Article  Google Scholar 

  6. M. Barj, G. Lucazeau andR. Clèment:J. Mol. Struct.,79, 329 (1982).

    Article  Google Scholar 

  7. M. Barj andG. Lucazeau:Solid State Ionics,9–10, 475 (1983).

    Article  Google Scholar 

  8. S. Yamanaka, H. Kobayashi andT. Tanaka:Chem. Lett. Jpn., 329 (1976).

  9. R. Brec, G. Ouvrard, A. Louisy, J. Rouxel andA. Le Méhauté:Solid State Ionics,6, 185 (1982).

    Article  Google Scholar 

  10. M. H. Whangbo, R. Brec, G. Ouvrard andJ. Rouxel:Inorg. Chem.,24, 2459 (1985).

    Article  Google Scholar 

  11. M. Bernasconi, G. L. Marra, G. Benedek, L. Miglio, M. Jouanne, C. Julien, M. Scagliotti andM. Balkanski:Phys. Rev. B,38, 12089 (1988).

    Article  ADS  Google Scholar 

  12. R. W. G. Wychoff:Crystal Structures, Vol.2 (J. Wiley and Sons, New York, N.Y., 1984), p. 55.

    Google Scholar 

  13. W. Klingen: Thesis, Universität Hohenheim (1969).

  14. W. Klingen, G. Eulenberger andH. Hahn:Z. Anorg. Allg. Chem.,401, 97 (1973).

    Article  Google Scholar 

  15. W. Klingen, R. Ott andH. Hahn:Z. Anorg. Allg. Chem.,396, 271 (1973).

    Article  Google Scholar 

  16. R. Brec, G. Ouvrard andJ. Rouxel:Mater. Res. Bull.,20, 1257 (1985);G. Ouvrard, R. Brec andJ. Rouxel:Mater. Res. Bull.,20, 1181 (1983).

    Article  Google Scholar 

  17. P. J. S. Foot andB. A. Nevett:Solid State Ionics,8, 173 (1983).

    Article  Google Scholar 

  18. Y. Chabre, P. Segransan, C. Berthier andG. Ouvrard:Fast Ion Transport in Solids, edited byP. Vashista, J. N. Mundy andG. H. Shenoy (North-Holland, Amsterdam, 1979), p. 221.

    Google Scholar 

  19. H. Mercier: These d'Etat, Université de Paris Sud, Orsay (1985).

  20. N. Kurita andK. Nakao:J. Phys. Soc. Jpn.,56, 4455 (1987).

    Article  ADS  Google Scholar 

  21. A. A. Maradudin, E. W. Montroll, G. H. Weiss andI. P. Ipatova:Theory of Lattice Dynamics in the Harmonic Approximation (Academic Press, New York, N.Y., 1971).

    Google Scholar 

  22. G. Benedek, G. L. Marra, L. Miglio, M. Scagliotti andM. Jouanne:Phys. Scr.,37, 759 (1988).

    ADS  Google Scholar 

  23. M. Born andK. Huang:Dynamical Theory of Crystal Lattices (Oxford University Press, Oxford, 1954), p. 247.

    Google Scholar 

  24. M. Tosi:Solid State Phys.,16, 1 (1964).

    Google Scholar 

  25. M. Scagliotti, M. Jouanne, M. Balkanski andG. Ouvrard:Solid State Commun.,54, 291 (1985).

    Article  Google Scholar 

  26. M. Scagliotti, M. Jouanne, M. Balkanski, G. Ouvrard andG. Benedek:Phys. Rev. B,35, 7097 (1987).

    Article  ADS  Google Scholar 

  27. M. Balkanski, M. Jouanne, G. Ouvrard andM. Scagliotti:J. Phys. C,20, 4397 (1987).

    Article  ADS  Google Scholar 

  28. C. Sourisseau, J. P. Forgerit andY. Mathey:Solid State Chem.,49, 134 (1983).

    Article  ADS  Google Scholar 

  29. Y. Mathey, R. Clement, C. Sourisseau andG. Lucazeau:Inorg. Chem.,19, 273 (1980).

    Google Scholar 

  30. M. Barj, C. Sourisseau, G. Ouvrard andR. Brec:Solid State Ionics,11, 179 (1983).

    Article  Google Scholar 

  31. R. Mercier, J. P. Malugani, B. Fahys, J. Douglade andG. Robert:J. Solid State Chem.,43, 151 (1982).

    Article  ADS  Google Scholar 

  32. G. A. Fatseas, M. Evain, G. Ouvrard, R. Brec andM. H. Whangbo:Phys. Rev. B,35, 3082 (1987).

    Article  ADS  Google Scholar 

  33. R. Brec andG. Ouvrard: private communications.

  34. C. Horie, M. Maeda andY. Kuramoto:Phisica B,99, 430 (1980).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernasconi, M., Benedek, G. & Miglio, L. Phonon dispersion curves and densities of lithium-intercalated iron phosphorus trisulfide. Il Nuovo Cimento D 12, 1061–1078 (1990). https://doi.org/10.1007/BF02451950

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02451950

PACS 63.20.Dj

PACS 68.65

Navigation