Skip to main content
Log in

Langevin formulation of quantum mechanics

  • Published:
Il Nuovo Cimento D

Summary

We present in a rather pedagogical way a new formulation of quantum mechanics. Our starting point is the path integral representation of the quantum-mechanical propagator analytically continued to imaginary timeW(X″, s″|X′, s′). We view the set of random paths contributing toW(X″, s″|X′, s′) as the manifold of solutions of a Langevin equation with a Gaussian white noise. We thus obtainW(X″, s″|X′, s′) as the noise-average of a suitable functional of the solution of the Langevin equation. The standard quantum-mechanical propagator is finally recovered by analytically continuingW(X″, s″|X′, s′) back to real time. The present approach allows for a straightforward application of standard methods of classical stochastic processes to quantum-mechanical problems and offers a new promising way to perform computer simulations of quantum-dynamical systems.

Riassunto

Si presenta in un modo piuttosto pedagogico una nuova formulazione della meccanica quantistica. Il punto di partenza è costituito dalla rappresentazione, in termini di integrale di cammino, del propagatore quanto-meccanicoW(X″, s″|X′, s′) prolungato analiticamente nel tempo immaginario. Si considera l'insieme dei cammini casuali che contribuiscono aW(X″, s″|X′, s′) come l'insieme delle soluzioni dell'equazione di Langevin in presenza di un rumore bianco gaussiano. Si ottiene alloraW(X″, s″|X′, s′) come media su rumore di un opportuno funzionale della soluzione dell'equazione di Langevin. L'usuale propagatore quantistico è poi riottenuto con un ulteriore prolungamento analitico al tempo reale. Questa formulazione consente una diretta applicazione dei metodi dei processi stocastici classici a problemi quantistici e rappresenta un nuovo promettente modo di effettuare simulazioni numeriche di sistemi quanto-meccanici.

Резюме

С педагогической целью мы предлагаем новую формулировку квантовой механики. Мы исходим из представления, использующего интегрирование по траекториям, кватовомеханического пропагатора, аналитически продолженного в область мнимого времениW(X″, s″|X′, s′). Мы рассиатриваем систему случайных траекторий, вносящих вклад вW(X″, s″|X′, s′), как множество решений уравнения Ланжевена в случае гауссова белого шума. Мы получаемW(X″, s″|X′, s′), как среднее по шуму для соответствующего функционала решения уравнения Ланжевена. Стандартный квантовомеханический пропагатор восстанавливается с помошью аналитического продоженияW(X″, s″|X′, s′) обратно в область вещественного времени. Предложенный подход позволяет непосредственно применять стандартные методы классических стохастических процессов к квантовомеханическим проблемам и представляет новый метод для проведения компьютерного моделирования квантоводинамических систем.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Parisi andWu Yongshi:Sci. Sin.,24, 483 (1983). For a review, seeP. H. Damgaard andH. Huffel:Phys. Rep. 152, 227 (1987).

    Google Scholar 

  2. Seee.g. G. Parisi:Les Houches Session XLIII (1984), edited byK. Osterwalder andR. Stora (North-Holland, Amsterdam, 1986).

    Google Scholar 

  3. E. Schrödinger:Berl. Sizber., 144 (1931);E. Schrödinger:Ann. Inst. Henry Poincaré,2, 269 (1932).

  4. R. Fürth:Z. Phys.,81, 143 (1933).

    Article  MATH  ADS  Google Scholar 

  5. For an incomplete list of references seee.g. ref..

    Google Scholar 

  6. M. Jammer:The Philosophy of Quantum Mechanics (J. Wiley, N.Y., New York 1976). See also ref.

    Google Scholar 

  7. G. C. Ghirardi, C. Omero, A. Rimini andT. Weber:Riv. Nuovo Cimento,1, 1 (1978).

    MathSciNet  Google Scholar 

  8. E. Nelson:Phys. Rev.,150, 1079 (1966);E. Nelson:Dynamical Theories of Brownian Motion (Princeton University Press, Princeton, N.J., 1967);E. Nelson:Quantum Fluctuations (Princeton University Press, Princeton, N.J., 1984). For a particular clear presentation of stochastic mechanics and its connection with quantum field theory, see:F. Guerra:Phys. Rep.,77, 263 (1981).

    Article  ADS  Google Scholar 

  9. F. Guerra:On the Connection between Euclidean-Markov Field Theory and Stochastic Quantization, inProc. S.I.F., Course LX (North-Holland, Amsterdam, 1976);F. Guerra:Phys. Rep.,77, 263 (1981).

    Google Scholar 

  10. R. P. Feynman:Rev. Mod. Phys.,20, 367 (1948);R. P. Feynman andA. R. Hibbs:Quantum Mechanics and Path-Integrals (McGraw-Hill, New York, N.Y., 1965).

    Article  MathSciNet  ADS  Google Scholar 

  11. G. Parisi:Nucl. Phys. B,180, 379 (1981);205, 337 (1982).

    Article  ADS  Google Scholar 

  12. More precisely Lagrangian (2.1) describes gravitational interactions in the approximation where the space-space part of the four-dimensional metric tensor can be considered constant.

  13. H. Weyl:The Theory of Groups and Quantum Mechanics (Dover, New York, N.Y., 1950). See also,e.g.,T. D. Lee:Particle Physics and Introduction to Field Theory (Harwood Academic Publishers, New York, N.Y., 1981).

    Google Scholar 

  14. Obviously, whenever we talk aboutprobability for a continuous variable we always meanProbability density!

  15. We are implicitly assuming that the Hamiltonian has a well-defined ground state.

  16. Feynman's original assumption was made for theLagrangian path integral, but, in general, the correct procedure is to start from theHamiltonian path integral.

  17. See,e.g.,S. Pokorski:Gauge Field Theories (Cambridge University Press, Cambridge, 1987).

    Google Scholar 

  18. This point is explained,e.g. inL. S. Schulman:Thechniques and Applications of Path Integration (J. Wiley, New York, N.Y., 1981).

    Google Scholar 

  19. See,e.g.,H. P. McKean:Stochastic Integrals (Academic Press, New York, N.Y., 1969).

    Google Scholar 

  20. F. A. Berezin:Theor. Math. Phys.,6, 194 (1971).

    Article  MATH  MathSciNet  Google Scholar 

  21. M. M. Mizrahi:J. Math. Phys. (N.Y.),16, 2201 (1975). See alsoT. D. Lee:Particle Physics and Introduction to Field Theory (Harwood Academic Publishers, New York, N.Y., 1981).

    Article  MathSciNet  ADS  Google Scholar 

  22. The analytic continuation of eitherA i(X, t) or ϕ(X, t) is a standard practice in gauge theories see,e.g.,K. Huang:Quarks, Leptons, and Gauge Fields (World Scientific Publishing Co., Singapore, 1982).

    Google Scholar 

  23. See,e.g.,R. Graham:Z. Phys. B,26, 281 (1977).

    Article  Google Scholar 

  24. See,e.g.,I. M. Gel'fand andA. M. Yaglom:J. Math. Phys. (N.Y.),1, 48 (1960) and ref. (23).R. Graham;Z. Phys. B,26, 281 (1977).

    Article  MATH  Google Scholar 

  25. The mathematical origin of eq. (2.30) is the same as that of eq. (2.16).

  26. A. Einstein:Investigations on the Theory of the Brownian Movement (Methuen and Company, London, 1926);M. Von Smoluchowski:Abhandlungen über die Brownsche Bewegung und Verwandte Erscheinungen (Akademische Verlagsgesellschaft, Leipzig, 1923). See also,e.g.,H. Risken:The Fokker-Planck Equation (Springer, New York, N.Y., 1984).

    Google Scholar 

  27. This equation is often called Smoluchowski equation.

  28. See ref. We point out that the difference between eq. (3.5) and the result ofF. W. Wiegele:Physica,37, 105 (1967) arises from a different discretization prescription.

    Article  MATH  Google Scholar 

  29. P. Langevin:C. R. Acad. Sci.,146, 530 (1908). See also,e.g.,H. Risken:The Fokker-Planck Equation (Springer, New York, N.Y., 1984).

    MATH  Google Scholar 

  30. See,e.g.,E. Gozzi:Phys. Rev. D,28, 1922 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  31. E. Witten:Nucl. Phys. B,186, 253 (1981).

    Article  MathSciNet  Google Scholar 

  32. G. Parisi andN. Surlas:Nucl. Phys. B,206, 321 (1982);S. Cecotti andL. Girardello:Ann. Phys. (N.Y.),145, 81 (1983);M. V. Felgel'man andA. M. Tsvelik:Sov. Phys. JETP,56, 823 (1982).

    Article  MATH  ADS  Google Scholar 

  33. E. Gozzi:Phys. Lett. B,129, 432 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  34. F. Guerra:Phys. Rep.,77, 263 (1981).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

To speed up publication, the author has agreed not to receive proofs which have been supervised by the Scientific Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roncadelli, M. Langevin formulation of quantum mechanics. Il Nuovo Cimento D 11, 73–99 (1989). https://doi.org/10.1007/BF02450234

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02450234

PACS 03.65

PACS 05.45

Navigation