Skip to main content
Log in

Enhanced production of nitric oxide in rat organs in heat shock

  • Biophysics and Biochemistry
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

Abstract

Heat shock is shown to lend a marked boost to the production of nitric oxide (NO), which attains the maximal level 1 hour after exposure and returns to the initial level after 24 hours. The generation of NO in all studied organs is completely blocked by Nω-nitro-L-arginine, an inhibitor of NO synthase, both in the control and after hyperthermia. Thus, heat shock markedly stimulates NO synthesis. This generalized effect may underlie the drop in the peripheral vascular tone that is characteristic of heat shock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. F. Vanin, E. B. Manukhina, A. V. Lapshin, and F. Z. Meerson,Byull. Eksp. Biol. Med.,116, No. 8, 142–144 (1993).

    CAS  Google Scholar 

  2. V. D. Mikoyan, N. V. Voevodskaya, L. N. Kubrina,et al., Biokhimiya,59, No. 5, 732–738 (1994).

    CAS  Google Scholar 

  3. A. P. Shepelev,Vopr. Med. Khim.,22, No. 1, 47–51 (1976).

    PubMed  CAS  Google Scholar 

  4. E. A. Carter, T. Derojaswalker, S. Tamur,et al., Biochem. J.,304, Pt. 1, 201–204 (1994).

    PubMed  CAS  Google Scholar 

  5. C. V. Gisolfi, R. D. Matthes, K. C. Kregel, and R. Oppliger,J. Appl. Physiol.,70, 1821–1826 (1991).

    PubMed  CAS  Google Scholar 

  6. A. V. Gourine, in:Thermal Balance in Health and Disease: Recent Basic Research and Clinical Progress, Eds. E. Zeisbergeret al., Birkhauser Verlag AG (1994), pp. 491–495.

  7. D. M. Hall, G. R. Buettner, B. D. Matthes, and C. V. Gisolfi,J. Appl. Physiol.,77, No. 2, 548–533 (1994).

    PubMed  CAS  Google Scholar 

  8. K. Hiki, Y. Yui, R. Hattori,et al., Jpn. J. Pharmacol.,56, 217–220 (1991).

    PubMed  CAS  Google Scholar 

  9. A. J. Kielblock, N. B. Strydom, F. J. Burger,et al., Aviat. Space Environ. Med.,53, 171–178 (1982).

    PubMed  CAS  Google Scholar 

  10. K. C. Kregel, P. T. Wall, and C. V. Gisolfi,J. Appl. Physiol.,64, 2582–2588 (1988).

    PubMed  CAS  Google Scholar 

  11. A. Mülsch, B. Schray-Utz, P. I. Mordvintsev,et al., FEBS Lett.,321, No. 2–3, 215–218 (1993).

    Article  PubMed  Google Scholar 

  12. C. Nathan,FASEB J.,6, 3051–3064 (1992).

    PubMed  CAS  Google Scholar 

  13. S. Shibolet, M. C. Lancaster, and Y. Danon.,Aviat. Space Environ. Med.,47, 280–301 (1976).

    PubMed  CAS  Google Scholar 

  14. R. A. Star,Am. J. Med. Sci.,306, 348–358 (1993).

    PubMed  CAS  Google Scholar 

  15. A. F. Vanin, P. I. Mordvintsev, and A. L. Kleshchev,Stud. Biophys.,107, 135–142 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated fromByulleten' Eksperimental'noi Biologii i Meditsiny, Vol. 121, No. 5, pp. 520–523, May, 1996

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manukhina, E.B., Malyshev, I.Y., Mikoyan, V.D. et al. Enhanced production of nitric oxide in rat organs in heat shock. Bull Exp Biol Med 121, 471–474 (1996). https://doi.org/10.1007/BF02446939

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02446939

Key Words

Navigation