Skip to main content
Log in

Estimation of left ventricular myocardial elasticity and viscosity by a thick-walled spherical model

  • Biomedical Engineering
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

The authors measured the transfer function (TF) of the left ventricle (LV) in an isolated canine preparation. Here TF indicates the ratio of induced vibration in LV to input vibration when an external mechanical oscillation is applied. TF had a single peak the frequency of which changed from 40 Hz to 80 Hz when LV pressure (LVP) increased from 6 mm Hg to 96 mm Hg. A mathematical model was formulated to estimate the viscoelasticity of the spherical shell. This model was constructed of the material points, elastic components which connected all the material points, and viscous components placed in series with elastic components. Theoretical TF can be computed if the viscoelastic values are given. The value of viscoelasticity at which the theoretical TF best fitted the experimental TF was considered to be the viscoelasticity of the model. The validity of this approach was verified using a silicone spherical shell. The estimated myocardial elasticity was 40 kPa when LVP was 6 mm Hg, 160–170 kPa when LVP was 96 mm Hg and was approximately proportional to LVP, whereas viscosity showed small change. The inclination of elasticity was consistent with previous reports. These results proved that myocardial elasticity can be estimated by analysing the transfer function of the left ventricle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Advani, S. H. andLee, Y. C. (1970) Free vibrations of fluid-filled spherical shells.J. Sound Vibr.,12, 453–462.

    Google Scholar 

  • Demer, L. L. andYin, F. C. P. (1983) Passive biaxial mechanical properties of isolated canine myocardium.J. Physiol.,339, 615–630.

    Google Scholar 

  • Elzinga, G. andWesterhof, N. (1981) ‘Pressure-volume’ relations in isolated cat trabecula.Circ. Res.,49, 388–394.

    Google Scholar 

  • Ghista, D. N., Sandler, H. andVayo, H. W. (1975) Elastic modulus of the human intact left ventricle: determination and physiological interpretation.Med. & Biol. Eng.,13, 151–161.

    Google Scholar 

  • Halperin, H. R., Chew, P. H., Weisfeldt, M. L., Sagawa, K., Humphery, J. D. andYin, F. C. P. (1987) Transverse stiffness: a method for estimation of myocardial wall stress.Circ. Res.,61, 695–703.

    Google Scholar 

  • Jantz, R. andGrimm, A. F. (1973) Deformation of the diastolic left ventricle.Biophys. J.,13, 689–704.

    Article  Google Scholar 

  • Koiwa, Y., Hashiguchi, R., Ohyama, T., Isoyama, S., Satoh, S., Suzuki, H. andTakishima, T. (1986) Measurement of instantaneous viscoelastic properties by impedance-frequency curve of the ventricle.Am. J. Physiol.,250, H672-H684.

    Google Scholar 

  • Koiwa, Y., Ohyama, T., Takagi, T., Kikuchi, J., Honda, H., Hashiguchi, R., Shimizu, Y., Butler, J. P. andTakishima, T. (1988) The left ventricular vibration mode in the transfer function method and at the moment of the first heart sound.Front. Med. Biol. Eng.,1, 59–70.

    Google Scholar 

  • Mirsky, I. andParmley, W. W. (1974) Evaluation of passive elastic stiffness for the left ventricle and isolated heart muscle. InCardiac mechanics: Physiological, clinical and mathematical considerations. John Wiley & Sons Inc., New York, Chap. 11.

    Google Scholar 

  • Mirsky, I., Janz, R. F., Kubert, B. R., Korecky, B. andTaichman, G. C. (1976) Passive elastic wall stiffness of the left ventricle: a comparison between linear theory and large deformative theory.Bull. Math. Biol.,38, 239–251.

    Article  MATH  Google Scholar 

  • Pinto, J. G. andFung, Y. C. (1973) Mechanical properties of the heart muscle in the passive state.J. Biomech.,6, 597–616.

    Article  Google Scholar 

  • Sagawa, K. (1978) The ventricular pressure-volume diagram revised.Circ. Res.,43, 677–687.

    Google Scholar 

  • Suga, H., Sagawa, K. andShoukas, A. A. (1973) Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. —Ibid.,,35, 314–322.

    Google Scholar 

  • Tani, J., Miyachi, Y., Ohtomo, K., Takishima, T., Koiwa, Y., Ohyama, T., Shimizu, Y., Takagi, T., Kikuchi, J., Honda, H. andHoshi, N. (1989) Identification of left ventricular viscoelastic properties (English abstract).Transcription Jpn. Soc. Mech. Eng. (Series C) 55, 1622–1627.

    Google Scholar 

  • Templeton, G. H., Mitchell, J. H., Ecker, R. R. andBlomqvist, G. (1970) A method for measurement of dynamic compliance of the left ventricle in dogs.J. Appl. Physiol.,29, 742–745.

    Google Scholar 

  • Templeton, G. H. andNardizzi, L. R. (1974) Elastic and viscous stiffness of the canine left ventricle. —Ibid.,,36, 123–127.

    Google Scholar 

  • Templeton, G. H., Wildenthal, K., Willerson, J. T. andReardon, W. C. (1974) Influence of temperature on the mechanical properties of cardiac muscle.Circ. Res.,36, 624–634.

    Google Scholar 

  • Van Loon, P. (1980) Model parameters of mechanical structures. Ph.D. dissertation, Katholiek Univ. Leuven.

  • Yeatman, L. A., Parmley, W. W. andSonnenblick, E. H. (1969) Effects of temperature on series elasticity and contractile element motion in heart muscle.Am. J. Physiol.,217, 1030–1034.

    Google Scholar 

  • Yin, F. C. P., Strumpf, R. K., Chew, P. H. andZeger, S. L. (1987) Quantification of the mechanical properties of noncontracting canine myocardium under simultaneous biaxial loading.J. Biomech.,20, 557–589.

    Article  Google Scholar 

  • Zienkiewicz, O. C. andCheung, Y. K. (1967)The finite element method in structural and continuum mechanics. 3rd edn. McGraw Hill, New York.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tani, J., Yamamoto, H., Honda, H. et al. Estimation of left ventricular myocardial elasticity and viscosity by a thick-walled spherical model. Med. Biol. Eng. Comput. 31, 325–332 (1993). https://doi.org/10.1007/BF02446683

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02446683

Keywords

Navigation