Skip to main content
Log in

Energy absorbing ability of articular cartilage during impact

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

Forty-eight samples of 9 mm diameter articular cartilage and associated subchondral bone from, the tibial plateau of human knee joints were mounted in methylmethacrylate cement and subjected to controlled impact velocities. The controlled velocities provided for the testing of 21 samples at a strain rate of 500 s−1 and 27 samples at a strain rate of 1000 s−1. Data are presented on the energy absorption per unit volume of cartilage in relation to the associated stresses and strains. The data in each of the resultant nine graphs are subjected to a least squares fit to the polynomial

$$Y = a_1 X + a_2 X^2 $$

The relevant statistical data for each of the strain rates and for the combined data are presented. While the total energy absorption of the articular cartilage of the knee joint at ambulatory stresses of 0·8 to 6·3 N/mm2 is calculated to be no more than 0·13 to 3·65 J, it is suggested that the compliance of the cartilage of the knee joint together with the incongruity of the tibia and femur are essential features that should be considered in the design of total knee-replacement prostheses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Biggars, J. D., Gwatkin, R. B. L. andHeyner, S. (1961) Growth of embryonic avian and mammalian tibiae on a relatively simple chemically defined medium.Exp. Cell Res. 25, 41–58.

    Article  Google Scholar 

  • Boas N. F. (1953) Method for the determination of hexosamines in tissues.J. Bio. Chem. 204, 553–563.

    Google Scholar 

  • Burke, D. I., Ahmed, A. M., Miller, J. andStachiewicz, J. W. (1977) Pressure distribution on the tibial plateau; load transmission role of the menisci. Proceedings of 23rd Annual ORS. Las Vegas,2, 105.

    Google Scholar 

  • Finlay, J. B., Evans, J. H., North, J. F., Gibson, T. andKenedi, R. M. (1971) The mechanical and structural characteristics of connective tissue. AGARD Conference Proceedings 88 Linear Acceleration of Impact Type, 20–1 to 20–10.

  • Finlay, J. B. (1977) High speed linear analogue position transducer.IEEE Trans.,IM-26, 184–185.

    Google Scholar 

  • Finlay, J. B. (1978), Thixotropy in human skin.J. Biomech. 11, 333–342.

    Article  Google Scholar 

  • Finlay, J. B. andRepo, R. U. (1978a) Instrumentation and procedure for the controlled impact of articular cartilage.IEEE Trans.,BME-25, 34–39.

    Google Scholar 

  • Finlay, J. B. andRepo, R. U. (1978b) Impact characterististics of articular cartilage.ISA Trans.,17, 29–34.

    Google Scholar 

  • Finlay, J. B. andRepo, R. U. (1978c) Cartilage impactin vitro; effect of bone and cement.J. Biomech. 11, 379–388.

    Article  Google Scholar 

  • Harrington, I. J. (1976) A bioengineering analysis of force actions at the knee in normal and pathological gait.Biomed. Eng. 11, 167–172.

    MathSciNet  Google Scholar 

  • Insall, J. N., Ranawat, C. S., Aglietti, P. andShine, J. (1976) A comparison of four models of total knee-replacement prostheses.J. Bone & Joint Surg. 58-A, 754–765.

    Google Scholar 

  • Mankin, H. J. andLippiello, L. (1970) Biochemical and metabolic abnormalities in articular cartilage from osteoarthritic human hips.J. Bone & Joint Surg. 52-A, 424–434

    Google Scholar 

  • Maquet, P. G., Van de Berg, A. J. andSimonet, J. F. (1975) Femorotibial weight-bearing area.J. Bone & Joint Surg. 57-A, 766–771.

    Google Scholar 

  • Maroudas, A., Muir, H. andWingham, J. (1969) The correlation of fixed negative charge with glycosaminoglycan content of human articular cartilage.Biochim. Biophys. Acta 177, 492–500.

    Google Scholar 

  • Morrison, J. B. (1968) Bioengineering analysis of force actions transmitted by the knee joint.Bio-Med Eng. 3, 164–170.

    MathSciNet  Google Scholar 

  • Morrison, J. B. (1970) The mechanics of the knee joint in relation to normal walking.J. Biomech. 3, 51–61.

    Article  Google Scholar 

  • Paradine, C. G. andRivett, B. H. P. (1964) Small samples. Student’st. variance ratio.in Christopherson, D. G. (Ed.)Statistical Methods for Technologists, English Universities Press, London, 111–115.

    Google Scholar 

  • Radin, E. L. andPaul, I. L. (1970) Does cartilage compliance reduce skeletal impact loads? The relative force-attenuating properties of articular cartilage, synovial fluid, periarticular soft tissue and bone.Arthritis and Rheumatism,13, 139–144.

    Google Scholar 

  • Radin, E. L., Paul, I. L. andLowy, M. (1970) A comparison of the dynamic force transmitting properties of subchondral, bone and articular cartilage.J. Bone & Joint Surg. 52-A, 444–456.

    Google Scholar 

  • Radin, E. L., Ehrlich, G., Chernack, R., Abernethy, P., Paul, I. L. andRose, R. M. (1978) Effect of repetitive impulsive laoding on the knee joints of rabbits.Clin. Orthopaedics & Related Res. 131, 288–393.

    Google Scholar 

  • Repo, R. U. andFinlay, J.B. (1977) Survival of articular cartilage after controlled impact.J. Bone & Joint Surg. 59-A, 1068–1076.

    Google Scholar 

  • Repo, R. U., Finaly, J. B. andHardie, R. (1978) Dynamic compressive stiffness of proteoglycan depleted adult human articular cartilage.Ortho. Trans. J. Bone Joint Surg. (A)2, 80.

    Google Scholar 

  • Shrive, N. G., O’Connor, J. J. andGoodfellow, J. W. (1978) Loadbearing in the knee joint.Clin. Orthopaedics & Related Res. 131, 279–287.

    Google Scholar 

  • Smidt, G. L. (1973) Biomechanical analysis of knee flexion and extension.J. Biomech. 6, 79–92.

    Article  Google Scholar 

  • Smith, L. D. (1953) Hip fractures. The role of muscle contraction or intrinsic forces in the causation of fractures of the femoral neck.J. Bone & Joint Surg.35-A, 367–383.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finlay, J.B., Repo, R.U. Energy absorbing ability of articular cartilage during impact. Med. Biol. Eng. Comput. 17, 397–403 (1979). https://doi.org/10.1007/BF02443830

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02443830

Keywords

Navigation