Skip to main content
Log in

Design analysis of parallel plate and hollow fibres haemofilters

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

A theoretical model of mass transfer by ultrafiltration (u.f.) at large transmembranes pressures in parallel plate and hollow fibres haemofilters is presented. The analysis assumes that the maximum u.f. flow QFM is limited by protein concentration polarisation and that the concentration boundary layer is thin. It takes into account the decrease of local blood flow along the membrane and therefore remains valid when the u.f. flow rate is a large fraction of the incoming blood flow Qbi. It is found that the ratio QFM/Qbi increases nonlinearly with S/(Qbidh) where S is the membrane area and dh the hydraulic diameter of the blood film. A parallel-plate haemofilter will have 20% more ultrafiltration than one of hollow fibre of the same membrane area and blood volume. However, if the two units have the same u.f. flow rate, the hollow fibre one will have the smaller blood volume. For a fibre type haemofilter at a given blood flow, QFM is a function of the total fibre length and is independent of fibre diameter. By using a blood film thickness in the vicinity of 150 μ, adequate clearances (0·4Qbi) can be obtained with membranes areas of 0·6 to 0·7 m2, significantly less than with present haemodialysers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A′ :

constants of Graetz correlation

b :

membrane width

C g :

gel concentration

C p :

local protein concentration

d :

fibre diameter

D :

diffusion coefficient

d h :

hydraulic perimeter

G :

Graetz number

h :

blood-channel thickness

H :

haematocrit

J :

local h.f. flux

k :

local mass transfer coefficient

K :

averaged mass transfer coefficient

L :

membrane length

N :

number of fibres

n :

exponent of Graetz correlation

p :

blood pressure

Q b :

blood-flow rate

Q FM :

maximum u.f. rate

S :

membrane area

V b :

blood velocity:Q b/hb

x :

distance along membrane

y :

normal co-ordinate

β:

dilution ratio

γ:

shear rate at membrane

μ:

blood viscosity

μp :

plasma viscosity

i :

inlet conditions

References

  • Blatt, W. F., David, A., Michaels, A. S. andNelsen, L. (1970) Solute polarization and cake formation in membrane ultrafiltration: causes, consequences and control techniques, inMembrane science and technology,Flinn, F. E. (Ed.) Plenum, 47–97.

  • Butruille, Y. Chevallet, J., Granger, A., Lissot, J. andSausse, A. (1976) Substitution of hemodialysis by blood ultrafiltration in the artificial kidney,E.S.A.O., November, London. 39.

  • Colton, C. K., Henderson, L. W., Ford, C. A. andLysaght, M. J. (1975) Kinetics of hemodiafiltration. I.In vitro transport characteristics of a hollow-fibre blood ultrafilter.J. Lab. Clin. Med.,85, 355–371.

    Google Scholar 

  • Funck-Brentano, J. L., Sausse, A., Man, N. K., Granger, A., Rondon-Nucette, M., Zingraff, J. andJungers, P. (1972) Une nouvelle méthode d'hémodialyse associant une membrane à haute perméabilité pour les moyennes molécules et un bain de dialyse en circuit fermé.Proceedings of the E.D.T.A.,9, 52.

    Google Scholar 

  • Gupta, B. B. andSeshadri, V. (1977) The flow of red blood cell suspensions through narrow tubes.Biorheology,14, 133–144.

    Google Scholar 

  • Henderson, L. W., Colton, C. K. andFord, C. A. (1975) Kinetics of hemodiafiltration. II. Clinical characterization of a new blood cleansing modality.J. Lab. Clin. Med.,85, 372–390.

    Google Scholar 

  • Jaffrin, M. Y., Butruille, Y., Granger, A. andVantard, G. (1978) Factors governing hemofiltration (HF) in a parallel plate exchanger with highly permeable membranes.Proc. ASAIO,24, 448–452.

    Google Scholar 

  • Jaffrin, M. Y., Vantard, G. andGranger, A. (1979) A concentration polarization model of hemofiltration with highly permeable membranes.ASAIO J.,2, 73–85.

    Google Scholar 

  • Lysacht, M. J., Ford, C. A., Colton, C. K., Stone, R. A. andHenderson, L. W. (1977) Mass transfer in clinical blood ultrafiltration devices: a review inTechnical aspects of renal dialysis, byFrost, T. H. (Ed.) Pitman Medical.

  • Probstein, R. F., Shen, J. S. andLeung, W. F., (1978) Ultrafiltration of macromolecular solutions at high polarization in laminar channel flow.Desalination,24, 1–6.

    Article  Google Scholar 

  • Vantard, G., Barthe, B., Chevallet, J. et al. (1979) L'hémofiltration face à l'hémodialyse.Revue Biotechnologie Médicale,1, 92.

    Google Scholar 

  • Wolf, Jr. L. andZaltman, S. (1968) Optimum geometry for artificial kidney dialysers inthe Artificial Kidney, byDedrick, P. L., Bischoff, K. B. andLeonard, E. F. (Eds.)Chem. Eng. Progr. Symp.; Series,84, 104.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaffrin, M.Y. Design analysis of parallel plate and hollow fibres haemofilters. Med. Biol. Eng. Comput. 19, 321–327 (1981). https://doi.org/10.1007/BF02442552

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02442552

Keywords

Navigation