Skip to main content
Log in

Whole body heat balance during the human thoracic hyperthermia

  • Biomedical Engineering
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

A whole-body heat balance model during hyperthermia is developed. In the model, local temperature is calculated using a finite-element model. The perfusion blood, along with its energy, is circulated to the rest of the body, where the heat dissipation is calculated using lumped segments. With this model the effects of the electromagnetic power dosage on the body core temperature and the responses of other body elements are analysed for the human thoracic hyperthermia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C p(i, j):

tissue specific heat in layerj of segmenti, J kg−1 °C−1

C pb :

blood specific heat, J kg−1 °C−1

COLDS :

integrated output from skin cold receptors, °C

DILAT :

total efferent skin vasodilation command, m3 s−1

ERROR :

output from thermoreceptors, °C

F s(i):

view factor ofS(i), dimensionless

H c(i):

convection heat transfer coefficient for segmenti, W m−2 °C−1

H r(i):

radiation heat transfer coefficient for segmenti, W m−2 °C−1

i :

segment number

j :

layer number in a segment

k(i, j) :

tissue thermal conductivity in layerj of segmenti, W m−1 °C−1

\(\dot m_b \) :

blood mass perfusion rate per unit volume of tissue;\(\dot m_b = \rho _b \omega \rho _t \), kgm-3s-1

\(\dot m_b {{C_{pb} } \mathord{\left/ {\vphantom {{C_{pb} } {\rho _t }}} \right. \kern-\nulldelimiterspace} {\rho _t }}\) :

in W kg−1 °C−1

N :

total number of segments

P skin :

saturation pressure of water at skin temperature, torr

P air :

partial pressure of water vapour at air temperature, torr

Q cond :

heat transfer due to conduction, W

Q conv :

convective heat transfer at a skin surface, W

Q em, body :

total body EM energy deposition, W

Q em :

rate of electromagnetic energy deposition, W

Q em :

EM energy deposition per unit volume of tissue, W m−3

Q met, body :

total body metabolic rate, W

Q met, b(i,j):

basal metabolic rate in layerj of segmenti, W

Q met :

metabolic heat per unit volume of tissue, W m−3

Q met :

rate of metabolic heating, W

Q per f :

heat transfer due to blood perfusion, W

Q rad :

radiation heat transfer at a skin surface, W

Q res :

respiration heat transfer, W

Q res, l :

latent (insensible) respiration heat transfer, W

Q res, d :

dry (sensible) respiration heat transfer, W

Q res :

respiration heat transfer per unit volume of lung tissue, W m−3

Q sweat(i):

heat transfer due to sweating from the skin of segmenti, W

Q sweat, b(i):

basal evaporation rate from the skin of segmenti, W

Q work :

heating by muscle work, W

R :

thermal resistance, °C W−1

r :

radius, m

r c :

radius at mid-volume, m

S(i) :

surface area of segmenti, m 2

SKINC (i) :

fraction of vasoconstriction command applicable to skin of segmenti, dimensionaless

SKINRS (i) :

fraction of all skin receptors in segmenti, dimensionless

SKINS (i) :

fraction of sweating command applicable to skin of segmenti, dimensionless

SKINV (i) :

fraction of vasodilation command applicable to skin of segmenti, dimensionless

STRIC :

total efferent skin vasoconstriction command, dimensionless

SWEAT :

total efferent sweat command, W

T sur :

surrounding temperature, °C

T a :

arterial temperature, °C

T air :

air temperature, °C

T(i, j) :

tissue temperature in layerj of segmenti, °C

T pa :

pulmonary arterial temeprature, °C

T pv :

pulmonary venous temperature, °C

T sa :

systemic arterial temperature, °C

T sv :

systemic venous temperature, °C

\(\dot V\left( {i,j} \right)\) :

tissue volume in layerj of segmenti, m3

\(\dot V\) :

cardiac output or total blood volume flow rate, m3 s−1

\(\dot V_{pa} \) :

pulmonary arterial blood volume flow rate, m3 s−1

\(\dot V_{pv} \) :

pulmonary venous blood volume flow rate, m3 s−1

\(\dot V_{sa} \) :

systemic arterial blood volume flow rate (cardiac output), m3 s−1

\(\dot V_{sv} \) :

systemic venous blood volume flow rate, m3 s−1

\(\dot V\left( i \right)\) :

blood flow rate to segmenti, m3 s−1

\(\dot V\left( {i,j} \right)\) :

blood flow rate to layerj of segmenti, m3 s−1

WARMS :

integrated output from skin warm receptors, °C

w :

skin wettedness, dimensionless

ρ (i, j):

tissue density in layerj of segmenti, kg m−3

ρb :

blood density, kg m−3

δ(i, j):

tissue electrical conductivity in layerj of segmenti

ω(i, j):

blood volume perfusion rate per unit mass of tissue in layerj of segmenti, m3 kg−1 s−1

ωb(i, j):

basal blood volume perfusion rate per unit mass of tissue in layerj of segmenti, m3 kg−1 s−1

ϕ:

relative humidity

References

  • Charny, C. K., Hagmann, M. J. andLevin, R. L. (1987) A whole body thermal model of man during hyperthermia.IEEE Trans.,BME-34, 375–387.

    Google Scholar 

  • Charny, C. K., andLevin, R. L. (1988) Simulations of MAPA and APA heating using a whole body thermal model.,BME-35, 362–371.

    Google Scholar 

  • Cooney, D. O. (1976)Biomedical engineering principles. Marcel-Dekker, New York, 114–117.

    Google Scholar 

  • Fanger, P. O. (1970) Conditions for thermal comfort: introduction of a general comfort equation. InPhysiological and behavioral temperature regulation.Hardy, J. D., Gagge, A. P. andStolwijk, J. A. J. (Eds.), Charles C. Thomas, Springfield, Illinois, Chap. 11, 152–176.

    Google Scholar 

  • Gagge, A. P. andNishi, Y. (1977) Heat exchange between human skin surface and thermal environment. InHandbook of physiology—reactions to environmental agents.Lee, D. H. K. (Ed.), Am. Physiol. Soc., Bethesda, Maryland, 69–92.

    Google Scholar 

  • Gordon, R. G., Roemer, R. B. andHorvath, S. M. (1976) A mathematical model of the human temperature regulatory system—transient cold exposure response.IEEE Trans.,BME-23, 443–449.

    Google Scholar 

  • Guyton, A. C. (1971)Textbook of medical physiology (4th edn.). W. B. Saunders Co., Philadelphia, Pennsylvania.

    Google Scholar 

  • Hagmann, M. J. andLevin, R. L. (1986) Aberrat heating: a problem in regional hyperthermia.IEEE Trans.,BME-33, 405–411.

    Google Scholar 

  • Hwang, C. L. andKonz, S. A. (1977) Engineering models of the human thermoregulatory system—a review.-24, 309–325.

    Google Scholar 

  • Iskander, M. F., Turner, P. F., DuBow, J. B. andKao, J. (1982) Two-dimensional technique to calculate the EM power deposition pattern in the human body.J. Microwave Power,17, 175–185.

    Google Scholar 

  • Iskander, M. F., andKhoshdel-Milani, O. (1984) Numerical calculations of the temperature distribution in realistic cross sections of the human body.Int. J. Radiat. Oncol. Biol. Phys.,10, 1907–1912.

    Google Scholar 

  • Levin, R. L. andHagmann, M. J. (1984) A heat and mass transfer model for computing thermal dose during hyeprthermic treatment of extremities. In1984 advances in bioengineering Spilker, R. L. (Ed.), ASME, New York, 13–14.

    Google Scholar 

  • Lou, Z., Yang, W. J. andSandhu, T. S. (1986) Numerical analysis of temeprature variations in cross section of the human thorax. Proc. 5th Int. Conf. on Mechanics in Med. and Biol., Bologna, Italy, 1st–5th July, 369–374.

  • Lou, Z., Yang, W. J. andSandhu, T. S. (1988) Numerical analysis of electromagnetic hyperthermia of the human thorax.Med. & Biol. Eng. & Comput.,26, 50–56.

    Google Scholar 

  • Lynch, D. R., Paulsen, K. D. andStrohbehn, J. W. (1985) Finite element solution of Maxwell's equations for hyperthermia treatment planning.J. Computat. Phys.,58, 246–269.

    Article  MATH  Google Scholar 

  • Lynch, D. R., Paulsen, K. D. andStrohbehn, J. W. (1986) Hybrid element method for unbounded electromagnetic problems in hyperthermia.Int. J. Num. Meth. in Eng.,23, 1915–1937.

    Article  MATH  Google Scholar 

  • Milligan, A. J., Eltaki, A., Baciewicz, F. A., Morgan, R. andJain, M. (1986) Localized radiofrequency interstitial hyperthermia in the canine lung: technique, blood flow response and histopathologic changes. InHeat and mass transfer in the micro-circulation of thermally significant vessels.Diller, K. R. andRoemer, R. D. (Eds.), ASME, New York, HTD-Vol, 61, 65–67.

    Google Scholar 

  • Montgomery, L. D. (1974) A model of heat transfer in immersed man.Ann. Biomed. Eng.,2, 19–46.

    Article  Google Scholar 

  • Paulsen, K. D., Strohbehn, J. W., Hill, S. C., Lynch, D. R. andKennedy, F. E. (1984a) Theoretical temperature profiles for concentric coil induction heating devices in a two-dimensional, axi-asymmetric inhomogeneous patient model.Int. J. Radiat. Oncol. Biol. Phys.,10, 1095–1107.

    Google Scholar 

  • Paulsen, K. D., Strohbehn, J. W. andLynch, D. R. (1984b) Theoretical temeprature distributions produced by an annular phased array-type system in CT-based patient models.Radiat. Res.,100, 536–552.

    Google Scholar 

  • Paulsen, K. D., Strohbehn, J. W. andLynch, D. R. (1985) Comparative theoretical performance for two types of regional hyperthermia systems.Int. J. Radiat. Oncol. Biol. Phys.,11, 1659–1671.

    Google Scholar 

  • Paulsen, K. D., Strohbehn, J. W. andLynch, D. R. (1988) Theoretical electric field distributions produced by three types of regional hyperthermia devices in a three-dimensional homogeneous model of man.IEEE Trans.,BME-35, 36–45.

    Google Scholar 

  • Song, C. W., Lokshina, A., Rhee, J. G., Patten, M. andLevitt, S. H. (1984) Implication of blood flow in hyperthermia treatment of tumors.-31, 9–16.

    Google Scholar 

  • Spiegel, R. J., Fatmi, M. B. E. andKunz, R. S. (1985) Application of a finite-difference technique to the human radiofrequency dosimetry problem.J. Microwave Power,20, 241–253.

    Google Scholar 

  • Spiegel, R. J. andFatmi, M. B. E. (1986) A three-dimensional finite-difference thermoregulatory model of a squirrel monkey.Int. J. Radiat. Oncol. Biol. Phys.,12, 983–992.

    Google Scholar 

  • Spiegel, R. J., Fatmi, M. B. E. andWard, T. R. (1987) A finitedifference electromagnetic deposition/thermoregulatory model: comparison between theory and measurements.Bioelectromagnetics,8, 259–273.

    Article  Google Scholar 

  • Stolwijk, J. A. J. (1971) A mathematical model of physiological temperature regulation in man. NASA Contractor Report, NASA CR-1855, Aug.

  • Stolwijk, J. A. J. andHardy, J. D. (1977) Control of body temeprature. InHandbook of physiology—reactions to environmental agents.Lee, D. H. K. (Ed.), Am. Physiol. Soc., Bethesda, Maryland, 45–68.

    Google Scholar 

  • Strohbehn, J. W. andRoemer, R. B. (1984) A survey of computer simulations of hyperthermia treatments.IEEE Trans.,BME-31, 136–149.

    Google Scholar 

  • Tikuisis, P., Gonzalez, R. R. andPandolf, K. B. (1988) Thermoregulatory model for immersion of humans in cold water.J. Appl. Physiol.,64, 719–727.

    Google Scholar 

  • Wissler, E. H. (1985) Mathematical simulation of human thermal behavior using whole-body models. InHeat transfer in medicine and biology,Shitzer,A. andEberhart,R. C. (Eds.), Plenum. New York, 325–373.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lou, Z., Yang, WJ. Whole body heat balance during the human thoracic hyperthermia. Med. Biol. Eng. Comput. 28, 171–181 (1990). https://doi.org/10.1007/BF02441774

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02441774

Key words

Navigation