Skip to main content
Log in

Flexible printed-circuit probe for electrophysiology

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

Photofabrication techniques have been used to produce a nickel-iron microelectrode array on Kapton film specifically designed for biological implantation. The probe is 2·5 mm×2 mm and carries four tissue terminals, each 2 μm in width. Both spontaneous and evoked potentials have been recorded from frog sciatic nerve. Developmental possibilities for the probe are fully discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blum, B. andFeldman, B. (1965) A micro-drive for the independent manipulation of four microelectrodes.IEEE Trans. BME-12, 121–122.

    Google Scholar 

  • Breitweiser, G. (1974) Surface profile measurements—a survey of applications in the area of vacuum deposition.J. Vac. Sci & Technol. 11, 101–105.

    Article  Google Scholar 

  • Clark, G. M. andHallworth, R. J. (1976) Multiple electrode array for cochlear implant.J. Laryngol. & Otol. 90, 623–627.

    Google Scholar 

  • Davidse, P. D. (1969) RF sputter etching—a universal etch.J. Electrochem. Soc. 116, 100.

    Google Scholar 

  • Donaldson, P. E. K. (1973) Experimental visual prosthesis.Proc. IEEE 120, 281–298.

    Google Scholar 

  • Dymond, A. M. (1976) Characteristics of the metaltissue interface of stimulation electrodes.IEEE Trans. BME-23, 274–280.

    Google Scholar 

  • Erlanger, J. andGasser, H. D. (1937)Electrical signs of nervous activity, University Pennsylvania Press, Philadelphia.

    Google Scholar 

  • Frank, K. andBecker, M. C. (1964) Microelectrodes for recording and stimulating. InNastuk, W. L. (Ed.)Physiological techniques in biological research, Chap. 2, Academic Press, New York.

    Google Scholar 

  • Fryer, T. B. andSandler, H. (1974) A review of implant telemetry systems.Biotelemetry 1, 351–374.

    Google Scholar 

  • Hanna, G. R. andJohnson, R. N. (1968) A rapid and simple method for the fabrication of arrays of recording electrodes.Electroenceph. Clin. Neurophysiol. 25, 284–286.

    Article  Google Scholar 

  • Hatzakis, M. (1969) Electron resists for microcircuit and mask production.J. Electrochem. Soc. 116, 1033–1037.

    Google Scholar 

  • Kater, S. B. andNicholson, C. (1973),Intracellular staining in neurobiology. Springer-Verlag, Berlin.

    Google Scholar 

  • Kohllöffel, L. U. E. (1971) Studies of the distribution of cochlear potentials along the basilar membrane.Acta Ota-Laryngol. Suppl. 288, 67.

    Google Scholar 

  • Llinas, R., Nicholson, C. andJohnson, K. (1973) Implantable monolithic wafer recording electrodes for neurophysiology.In Phillips, M. I. (Ed.),Brain unit activity during behaviour, C. C. Thomas, Illinois.

    Google Scholar 

  • Loeb, G. E., Marks, W. B. andBeatty, P. G. (1977) Analysis and microelectronic design of tubular electrode arrays intended for chronic, multiple singleunit recording from captured nerve fibres.Med. & Biol. Eng. 15, 195–201.

    Google Scholar 

  • Mannard, A., Stein, R. B. andCharles, D. (1974) Regeneration electrode units: implants for recording from single peripheral nerve fibres in freely moving animals,Science 183, 547–549.

    Google Scholar 

  • McCaffery, E. L. (1970)Laboratory preparation for macromolecular chemistry, McGraw Hill Book Co., New York.

    Google Scholar 

  • Michelson, R. P. (1971) The results of electrical stimulation of the cochlea in human sensory deafness.Ann. Otol. Rh. & Laryngol. 80, 914–919.

    Google Scholar 

  • Pickard, R. S. (in press) Printed circuit microelectrodes.In Donaldson, P. E. K. (Ed.),Electronics for biological research, Butterworths, London.

  • Pickard, R. S. andMill, P. J. (1975) Ventilatory muscle activity in restrained and free-swimming dragonfly larvae (Odonata: Anisoptera).J. comp. Physiol. 96, 37–52.

    Article  Google Scholar 

  • Pickard, R. S. andWelberry, T. R. (1976) Printed circuit microelectrodes and their application to honeybee brain.J. Exp. Biol. 64, 39–44.

    Google Scholar 

  • Robinson, D. (1968) The electrical properties of metal microelectrodes.Proc. IEEE 56, 1065–1071.

    Article  Google Scholar 

  • Sard, R. andMaydan, R. (1971) A structural investigation of the laser machining of thin bismuth films.J. Appl. Phys. 42, 5084–5094.

    Article  Google Scholar 

  • Sato, K., Harada, S. Saiki, A., Kimura, T., Okubo, T. andMukai, K. (1973) A novel planar multilevel interconnection technology utilising polyimide. 23rd Electronics Components Conference, 15–20.

  • Skrzypek, J. andKeller, E. (1975) Manufacture of metal microelectrodes with the scanning electron microscope.IEEE Trans. BME-22, 435–437.

    Google Scholar 

  • Sonn, M. andFeist, W. M. (1974) A prototype flexible microelectrode array for implant-prosthesis applications.Med. & Biol. Eng. 12, 778–791.

    Google Scholar 

  • Stämpfli, R. andHille, B. (1976) Electrophysiology of the peripheral myelinated nerve.In R. Llinás andW. Precht,Frog neurobiology, Springer-Verlag, New York.

    Google Scholar 

  • Starr, A., Wise, K. D. andCsongradi, J. (1973) An evaluation of photoengraved microelectrodes for extracellular single-unit recording.IEEE Trans. BME-20, 291–293.

    Google Scholar 

  • Thomas, C. A., Springer, P. A., Loeb, G. E., Berwald-Netter, Y. andOkun, L. M. (1972) A miniature microelectrode array to monitor the bioelectric activity of cultured cells.Exp. Cell Res. 74, 61–66.

    Article  Google Scholar 

  • Vossen, J. L. andO'Neil, J. J. (1968) RF sputtering processes.RCA Rev. 29, 149–179, Princeton, New Jersey.

    Google Scholar 

  • Wise, K. D. andAngell, J. B. (1975) A low-capacitance multielectrode probe for use in extracellular neurophysiology.IEEE Trans. BME-22, 212–219.

    Google Scholar 

  • Wise, K. D., Angell, J. B. andStarr, A. (1970) An integrated circuit approach to extracellular microelectrodes.IEEE Trans. BME-17, 238–246.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pickard, R.S., Joseph, P.L., Collins, A.J. et al. Flexible printed-circuit probe for electrophysiology. Med. Biol. Eng. Comput. 17, 261–267 (1979). https://doi.org/10.1007/BF02440939

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02440939

Keywords

Navigation