Skip to main content
Log in

Microsatellite evolution in the 5′ UTR of theHLA-F gene

  • Published:
Human Evolution

Abstract

In order to understand evolutionary aspects of the highly polymorphicHLA-F microsatellite (heterozygosity>90%), several alleles of primates were characterized. 576 meioses from 35 CEPH families were investigated for regular transmission. Furthermore 364 healthy, non-related individuals belonging to four populations from distant ethnic groups were analysed to determine the applicability of this locus in population studies.

Sequencing revealed alternate (GAGGAA)n blocks spaced by (GAA)n repeats in all primates analysed. The mutation rate of this locus amounts to 1.5%. The mutational patterns follow approximately the one step mutation model. Differential analysis suggests that mutation rates depend on the repeat length. Paternal mutation rates exceed maternal ones. The presence of both allele classes in all human populations investigated indicates that this polymorphism predated raciation. Evidence is provided that the short alleles originated from the longer ones by deletion. Finally the differential analysis of each allele class corroborates the biological history of the studied populations as traced by other genetic markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bowcock A.M., Ruiz-Linares A., Tomfohrde J., Minch E., Kidd J.R. & Cavalli-Sforza L.L., 1994.High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368: 455–457.

    Article  Google Scholar 

  • Campuzano V., Montermini L., Moltò M.D., Pianese L., Cossée M., Cavalcanti F., Rodious F. et al., 1996.Friedreich's ataxia: autossomal recesive disease caused by an intronic GAA triplet repeat expansion. Science 271:1423–1427.

    Google Scholar 

  • Carvajal J.J., Pook M.A., dos Santos M., Doudney K., Hillermann R., Minogue S., Williamson R. et al, 1996.The Friedreich's ataxia gene encodes a novel phosphatidylinositol-4-phosphate 5-kinase. Nature Genet. 14:157–162.

    Article  Google Scholar 

  • Cavalli-Sforza L.L., Menozzi P. & Piazza A. (eds), 1994. The history and geography of human genes. Princeton University Press. Princeton, New Jersey.

    Google Scholar 

  • Deka R., Jin L., Shriver M.D., Yu L.M., DeCroo S., Hundrieser J., Bunker C.H., et al., 1995.Populations genetics of dinucleotide (dC-dA)n (dG-dT)n polymorphisms in world populations. Am. J. Hum. Genet. 56:461–474.

    Google Scholar 

  • Di Rienzo A., Peterson A.C., Garza J.C., Valdes A.M., Slatkin M. & Freimer N.B., 1994.Mutational process of simple-sequence repeat in human populations. Proc. Natl. Acad. Sci. USA 91: 3166–3170.

    Article  Google Scholar 

  • Applen C., Epplen J.T., Frank G., Miterski B., Santos E.J.M. & Schöls L. 1997.Differential stability of the (GAA) n tract in the Friedreich Ataxia (STM7) gene. Hum. Genet. (99:834–836).

    Article  Google Scholar 

  • Geraghty D.E., Wei X., Orr H.T. & Koller B.H., 1990.Human leukocyte antigen F (HLA-F) an expressed HLA gene composed of a class 1 coding sequence linked to a novel transcribed repetitive element. J. Exp. Med. 171:1–8.

    Article  Google Scholar 

  • Goldstein D.B., Linares A.R., Feldman M.W. & Cavalli-Sforza L.L., 1995.An evaluation of genetic distances for use with microsatellite loci. Genetics 139:463–471.

    Google Scholar 

  • Jin H., Macaubas C., hallmayer J., Kimura A. & Mignot E., 1996.Mutation rates varies among alleles at a microsatellite locus: Phylogenetic evidence. Proc. Natl. Acad. Sci. USA 93:15285–15288

    Article  Google Scholar 

  • Jorde L.B., Bamshad M.J., Watkins W.S., Zenger R., Fraley A.E., Krakowiak P.A., Carpenter K.D., et al., 1995.Origins and affinities of modern humans: a comparison of mitochondrial and nuclear genetic data. Am. J. Hum. Genet. 57:523–538.

    Google Scholar 

  • Lázaro C., Gaona A., Ainsworth P., Tenconi R., Vidaud D., Kruyer H., Ars E., et al (1996)Sex differences in mutational rate and mutational mechanism in the NF1 in neurofibromatosisi type 1 patients. Hum. Genet. 98:696–699.

    Article  Google Scholar 

  • Nei M. (ed), 1987. Molecular evolutionary genetics. Columbia University Press, New York.

    Google Scholar 

  • Raha-Choudhury R., Tigue N.J. & Worwood M., 1994.Trinucleotide repeat microsatellite in the 5′ untranslated region of HLA-F. Hum. Mol. Genet. 3:2084.

    Google Scholar 

  • Raha-Choudhury R., Bowen D.J. & Worwood M., 1996.A new highly polymorphic marker in the 5′ untranslated region of HLA-F shows strong allelic association with haemochromatosis. Hum. Genet. 97:228–231.

    Article  Google Scholar 

  • Slatkin M., 1995.A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–162.

    Google Scholar 

  • Slatkin M., 1996.Gene genealogies within allelic classes. Genetics 143:579–587.

    Google Scholar 

  • Valdes A.M., Slatkin M. & Freimer N.B., 1993.Allele frequencies at microsatellite loci: the stepwise mutation model revisited. Genetics 133:737–749.

    Google Scholar 

  • Vogel F. & Motulsky A.G. (eds), 1996. Human genetics: problems and approaches. Springer-Verlag, Heidelberg, Germany

    Google Scholar 

  • Watkins W.S., Bamshad M. & Jorde L.B., 1995.Population genetics of trinucleotide repeat polymorphisms. Hum. Mol. Genet. 4:1485–1491.

    Google Scholar 

  • Weber J.L. & Wong C., 1993.Mutation of human short tandem repeats. Hum. Mol. Genet. 2:1123–1128

    Google Scholar 

  • Zhivotovisky L.A. & Feldman M.W., 1995.Microsatellite variability and genetic distances. Proc. Natl. Acad. Sci. USA 92:11549–11552.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santos, E.J.M., Epplen, J.T., Epplen, C. et al. Microsatellite evolution in the 5′ UTR of theHLA-F gene. Hum. Evol. 13, 57–64 (1998). https://doi.org/10.1007/BF02439369

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02439369

Key words

Navigation