Skip to main content
Log in

Taurine content in tissues from aged Fischer 344 rats

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Previous work in our laboratory had shown that serum TAU was lower in aged rats when compared to adult controls. The present study sought to determine if the age-related changes in serum TAU were reflected in tissues where TAU was known to have significant physiological relevance. TAU content was found to be significantly decreased in the atria, kidney and caudal artery of 30-month-old male Fischer 344 rats. Furthermore, glutamine content was also found to be altered by aging in both the heart and kidney. Exogenously administered glutamate was shown to increase renal glutamate content and decrease renal TAU content; however, this response was significantly attenuated in aged rats. Subcellular content and distribution of amino acids were not altered in the cerebral cortex of aged rats. Serum TAU was, however, significantly decreased in aged rats. It was concluded that renal conservation and regulation of TAU appears perturbed in the aged rat. Furthermore, the brain and heart can maintain tissue stores of TAU despite a significant age-related decrease in circulating TAU. Our data also suggests that there is an interrelationship between glutamate and TAU stores in the kidney.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gaull, G.E.: Taurine in pediatric nutrition: Review and update. Pediatrics, 83: 433–442, 1989.

    PubMed  CAS  Google Scholar 

  2. Huxtable, R.J.: Taurine in the central nervous system and the mammalian actions of taurine. Prog. in Neurobiology, 32: 371–533, 1989.

    Google Scholar 

  3. Barbeau, A., Inoue, N., Tsukada, Y., and Butterworth, R.F.: Minireview: The neuropharmacology of taurine. Life Sciences, 17: 669–678, 1975.

    Article  PubMed  CAS  Google Scholar 

  4. Palkovits, M., Banay-Schwartz, M., and Lajtha, A.: Taurine levels in brain nuclei of young adult and aging rats, in: Taurine: Functional Neurochemistry, Physiology and Cardiology, Wiley-Liss, Inc., 1990, pp. 45–51.

  5. Wallace, D.R., and Dawson, R., Jr.: Decreased plasma taurine in aged rats. Gerontol., 36: 19–27, 1990.

    Article  CAS  Google Scholar 

  6. Gibson, G.E., and Peterson, C.: Calcium and the aging nervous system. Neurobiol. of Aging, 8: 329–343, 1987.

    Article  CAS  Google Scholar 

  7. Harman, D.: Free radicals in aging. Molec. and Cell. Biochem., 84: 155–161, 1988.

    Article  CAS  Google Scholar 

  8. Nishio, S-I., Negoro, S., Hosokawa, T., Hara, H., Tanaka, T., Deguchi, Y., Ling, J., Awata, N., Axuma, J., Aoike, A., Kawai, K., and Kishimoto, S.: The effect of taurine on age-related immune decline in mice: The effect of taurine on T cell and B cell proliferative response under costimulation with ionomycin and phorbol myristate acetate. Mech. of Aging and Devel., 52: 125–139, 1990.

    Article  CAS  Google Scholar 

  9. Hanretta, A.T., and Lombardini, J.B.: The relationship between sodium and high-affinity taurine uptake in hypothalamic crude P2 synaptosomal preparations. Neurochem. Res., 12: 705–713, 1987.

    Article  PubMed  CAS  Google Scholar 

  10. Kishi, M., Ohkuma, S., Kimori, M., and Kyriyama, K.: Characteristics of taurine transport system and its developmental pattern in mouse cerebral cortical neurons in primary culture. Biochim. et Biophys. Acta, 939: 615–623, 1988.

    Article  CAS  Google Scholar 

  11. Van Gelder, N.M., and Barbeau, A.: The osmoregulatory function of taurine and glutamic acid, in: Taurine, Biological Actions and Clinical Perspectives, Alan R. Liss, Inc., 1985, pp. 149–163.

  12. Wade, J.V., Olson, J.P., Samson, F.E., Nelson, S.R., and Pazdernik, T.L.: A possible role for taurine in osmoregulation within the brain. J. Neurochemistry, 51: 740–745, 1988.

    CAS  Google Scholar 

  13. Schurr, A., Tseng, M.T., West, C.A., and Rigor, B.M.: Taurine improves the recovery of neuronal function following cerebral hypoxia: An in vitro study. Life Sciences, 40: 2059–2066, 1987.

    Article  PubMed  CAS  Google Scholar 

  14. Tenaglia, A., and Cody, R.: Evidence for a taurine-deficiency cardiomyopathy. Am. J. of Cardiology, 62: 136–139, 1988.

    Article  CAS  Google Scholar 

  15. Pion, P.D., Kittleson, M.D., Rogers, Q.R., and Morris, J.G.: Myocardial failure in cats associated with low plasma taurine: A reversible cardiomyopathy. Science, 237: 764–768, 1987.

    PubMed  CAS  Google Scholar 

  16. Azuma, J., Takihara, K., Awata, N., Sawamura, A., Ohta, H., Hamaguchi, T., Tanaka, Y., Fukuda, K., and Kishimoto, S.: Taurine and failing heart: Experimental and clinical aspects, in: Taurine: Biological Actions and Clinical Perspectives, Alan R. Liss, Inc., 1985, pp. 195–213.

  17. Nakagawa, M., Inoue, A., Toyoda, T., Sawada, S., Uno, M., and Takeda, K.: Central antihypertensive effect of taurine in: Taurine: Functional Neurochemistry, Physiology and Cardiology, Wiley-Liss, Inc., 1990, pp. 463–470.

  18. Abe, M., Shibata, K., Matsuda, T., and Furukawa, T.: Inhibition of hypertension and salt intake by oral taurine treatment in hypertensive rats. Hypertension, 10: 383–389, 1987.

    PubMed  CAS  Google Scholar 

  19. Rozen, R., and Scriver, C.R.: Renal transport of taurine adapts to perturbed taurine homeostasis. Proc. Natl. Acad. Sci. USA, 79: 2101–2105, 1982.

    PubMed  CAS  Google Scholar 

  20. Chesney, R.W., Zelikovic, I., Friedman, A.L., Dabbagh, S., Gusowski, N., Lippencott, S., and Stjeskal-Lorenz, E.: The role of diet in adaptation of renal tubular amino acid transport, in: Amino Acids in Health and Disease: New Perspectives, Alan R. Liss, Inc., 1987, pp. 19–41.

  21. Friedman, A.L., Albright, P.W., Gusowski, N., Padilla, M., and Chesney, R.W.: Renal adaptation to alteration in dietary amino acid intake. Am. J. Physiol., 245: F159–F166, 1983.

    PubMed  CAS  Google Scholar 

  22. Goldstein, R.S., Tarloff, J.B., and Hook, J.B.: Age-related nephropathy in laboratory rats. FASEB J., 2: 2241–2251, 1988.

    PubMed  CAS  Google Scholar 

  23. Coleman, G.L., Barthold, S.W., Osbaldiston, G.W., Foster, S.J., and Jonas, A.M.: Pathological changes during aging in barrier-reared Fischer 344 male rats. J. of Gerontol., 32: 258–278, 1977.

    CAS  Google Scholar 

  24. Silbernagl, S. The renal handling of amino acids and oligopeptides. Physiol. Reviews, 68: 911–1007, 1988.

    CAS  Google Scholar 

  25. Jones, D.P., Miller, L.A., and Chesney, R.W.: Adoptive regulation of taurine transport in two continuous renal epithelial cell lines. Kidney Internat., 38: 219–226, 1990.

    CAS  Google Scholar 

  26. Wallace, D.R., and Dawson, R., Jr.: Effect of age and monosodium-L-glutamate (MSG) treatment on neurotransmitter content in brain regions from male Fischer-344 rats. Neurochem. Res., 15: 889–898, 1990.

    Article  PubMed  CAS  Google Scholar 

  27. Massie, H.R., Williams, T.R., and DeWolfe, L.K.: Changes in taurine in aging fruit flies and mice. Exper. Gerontol., 24: 57–65, 1989.

    Article  CAS  Google Scholar 

  28. Banay-Schwartz, M., Lajtha, A., and Palkovits, M.: Changes with aging in the levels of amino acids in rat CNS structural elements, Il. Taurine and small neutral amino acids. Neurochem. Res., 14: 563–570, 1989.

    Article  PubMed  CAS  Google Scholar 

  29. Tayarani, II., Clöez. I., Lefauconnier, J-M., and Bourre, J-M.: Sodium-dependent high affinity uptake of taurine by isolated rat brain capillaries. Biochim. et Biophys. Acta, 985: 168–172, 1989.

    Article  CAS  Google Scholar 

  30. Huxtable, R., and Chubb, J.: Adrenergic stimulation of taurine transport by the heart. Science, 198: 409–411, 1977.

    PubMed  CAS  Google Scholar 

  31. Huxtable, R., Chubb, J., and Azari, J.: Physiological and experimental regulation of taurine content in the heart. FASEB J., 39: 2685–2690, 1980.

    CAS  Google Scholar 

  32. Docherty, J.R.: Cardiovascular responses in aging: A review. Pharmacolog. Reviews, 42: 103–125, 1990.

    CAS  Google Scholar 

  33. Inscho, E.W., Wilfinger, W.W., and Banks, R.O.: Age-related differences in the natriuretic and hypotensive properties of rat atrial extracts. Endocrinol., 121: 1662–1670, 1987.

    Article  CAS  Google Scholar 

  34. Dawson, R., and Meldrum, M.J.: Norepinephrine content in cardiovascular tissues from the aged Fischer-344 rats. Gerontol., in press, 1991.

  35. Danh, H.C., Benedetti, M.S., and Dostert, P.: Age-related changes in glutamine synthetase activity of rat brain, liver and heart. Gerontol., 31: 95–100, 1985.

    Article  Google Scholar 

  36. Kirzinger, S.S., and Fonda, M.L.: Glutamine and ammonia metabolism in the brains of senescent mice. Exp. Gerontol., 13: 255–261, 1978.

    Article  PubMed  CAS  Google Scholar 

  37. Rajeswari, T.S., and Radha, E.: Metabolism of the glutamate group of amino acids in rat brain as a function of age. Mech. of Ageing and Devel., 24: 139–149, 1984.

    Article  CAS  Google Scholar 

  38. Wallace, D.R.: Activity and regulation of phosphate-activated glutaminase: Characterization by age and brain region. Ph.D. Dissertation, Univ. of Florida, 1991.

  39. Lindman, R.D.: Anatomic and physiologic age changes in the kidney. Exp. Gerontol., 21: 379–406, 1986.

    Article  Google Scholar 

  40. Corman, B. Pratz, J., and Poujeol, P.: Changes in anatomy, glomerular filtration, and solute excretion in aging rat kidney. Amer. J. of Physiol., 248: R282–R287, 1985.

    CAS  Google Scholar 

  41. Treves, C., Favilli, F., Stio, M., Iantomasi, T., and Vincenzini, M.T.: Changes in metabolite transport by small intestine and kidney of young and old rats. Mech. of Ageing and Devel., 52: 263–276, 1990.

    Article  CAS  Google Scholar 

  42. Van Gelder, N.M.: Rectification of abnormal glutamic acid levels by taurine, in: Taurine, edited by Huxtable, R. and Barbeau, A., New York, Raven Press, 1976, pp. 293–302.

    Google Scholar 

  43. Michalk, D.V., Essich, H-J., Böhles, H.J., and Schärer, K.: Taurine metabolism in experimental renal failure. Kidney Internat., 24: S-16–S-21, 1983.

    Google Scholar 

  44. Trachtman, H., Barbour, R., Sturman, J.A., and Finberg, L.: Taurine and osmoregulation: Taurine is a cerebral osmo-protective molecule in chronic hypernatremic dehydration. Pediat. Res., 23: 35–39, 1988.

    PubMed  CAS  Google Scholar 

  45. Chesney, R.W.: Taurine: Is it required for infant nutrition? J. Nutr., 118: 6–10, 1988.

    PubMed  CAS  Google Scholar 

  46. Whittaker, V.P., and Baker, L.A.: The subcellular fractional of brain tissue with special reference to the preparation of synaptosomes and their component organelles, in: Methods in Neurochemistry, Vol. 2, edited by Fried, R. and Ranier, F., New York, Marcel Dekker Inc., 1972, pp. 1–52.

    Google Scholar 

  47. Joseph, M.J., and Davies, P.: Electrochemical activity of orphthalaldehyde mercaptoethanol derivatives of amino acids: Application to high-performance liquid chromatographic determination of amino acids in plasma and other biological materials. J. Chromatogr., 277: 125–136, 1983.

    PubMed  CAS  Google Scholar 

  48. Einarsson, S.: Selective determination of secondary amino acids using precolumn derivatization with 9-fluoromylmethyl-chloroformate and reversed phase high-performance liquid chromatography. J. Chromatogr., 348: 213–220, 1985.

    Article  CAS  Google Scholar 

  49. Donzanti, B.A., and Yamamoto, B.K.: An improved and rapid HPLC-EC method for the isocratic separation of amino acid neurotransmitters from brain tissue and microdialysis perfusates. Life Sci., 43: 913–922, 1988.

    Article  PubMed  CAS  Google Scholar 

  50. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72: 243–254, 1976.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Dawson, R., Wallace, D.R. Taurine content in tissues from aged Fischer 344 rats. AGE 15, 73–81 (1992). https://doi.org/10.1007/BF02435005

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02435005

Keywords

Navigation