Skip to main content
Log in

Phase-locking for dynamical systems on the torus and perturbation theory for mathieu-type problems

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Summary

When several oscillators are coupled together and the parameters of their coupling are varied, the oscillators pass through so-called phase-locked regimes. In physical terms this means that the oscillators tend to synchronize their motion. To describe this phenomenon, we frame the concepts ofpartial phase andphase-locking. A partial phase of a toral flow puts emphasis on how orbits of the flow drift around the torus in some fixed direction. The partial phase is locked if it grows in time along some orbit slower than any linear function. When a toral flow is given by a trigonometric polynomial, its phase-locked regions are quite narrow. With the coupling amplitude increasing, each region grows in width as some power of the amplitude. That power can be calculated in terms of both the partial phase and degree of the trigonometric polynomial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • V. I. Arnold (1961). Small denominators I. Mappings of the circumference onto itself.Izv. Akad. Nauk SSSR Ser. Mat. 25, 21–86 [Am. Math. Soc. Transl. Ser. 2 46 (1965), 213–284].

    MATH  MathSciNet  Google Scholar 

  • V. I. Arnold (1963). Small denominators and problems of stability of motion in classical and celestial mechanics.Usp. Mat. Nauk 18:6, 91–192 [Russian Math. Surveys 18:6 (1963), 91–192].

    MATH  Google Scholar 

  • V. I. Arnold (1983a).Geometrical Methods in the Theory of Ordinary Differential Equations. New York, Springer-Verlag.

    MATH  Google Scholar 

  • V. I. Arnold (1983b). Remarks on the perturbation theory for problems of Mathieu type.Usp. Mat. Nauk 38:4, 189–203 [Russian Math. Surveys 38:4 (1983), 215–233].

    MATH  Google Scholar 

  • P. B. Ashwin, J. Guaschi, and G. P. King (1991). Rotation sets and phase-locking in a three oscillator system. Warwick Preprints58.

  • C. Baesens, J. Guckenheimer, S. Kim, and R. S. MacKay (1991a). Simple resonance regions of torus diffeomorphisms. IMA Volume in Mathematics and Its Applications 37. New York, Springer-Verlag, pp. 1–9.

    Google Scholar 

  • C. Baesens, J. Guckenheimer, S. Kim, and R. S. MacKay (1991b). Three coupled oscillators: Mode-locking, global bifurcations and toroidal chaos.Physica D 49, 387–475.

    Article  MathSciNet  MATH  Google Scholar 

  • R. E. Ecke, J. D. Farmer, and D. K. Umberger (1989). Scaling of the Arnold tongues.Nonlinearity 2, 175–196.

    Article  MathSciNet  MATH  Google Scholar 

  • J. Franks and M. Misiurewicz (1990). Rotation sets of toral flows.Proc. Am. Math. Soc. 109, 243–249.

    Article  MathSciNet  MATH  Google Scholar 

  • O. G. Galkin (1989). Resonance regions for Mathieu type dynamical systems on a torus.Physica D 39, 287–298.

    Article  MATH  MathSciNet  Google Scholar 

  • K. Geist and W. Lauterborn (1990). The nonlinear dynamics of the damped and driven Toda chain, II. Fourier and Lyapunov analysis of tori.Physica D 41, 1–25.

    Article  MathSciNet  MATH  Google Scholar 

  • C. Grebogi, E. Ott, and J. A. Yorke (1985). Attractors on anN-torus: Quasiperiodicity versus chaos.Physica D 15, 354–373.

    Article  MathSciNet  MATH  Google Scholar 

  • G. R. Hall (1984). Resonance zones in two-parameter families of circle homeomorphisms.SIAM J. Math. Anal. 15, 1075–1081.

    Article  MATH  MathSciNet  Google Scholar 

  • A. Khintchine (1963).Continued Fractions. Groningen, Nordhorff.

    MATH  Google Scholar 

  • S. Kim, R. S. MacKay, and J. Guckenheimer (1989). Resonance regions for families of torus maps.Nonlinearity 2, 391–404.

    Article  MathSciNet  MATH  Google Scholar 

  • P. S. Linsay and A. W. Cumming (1989). Three-frequency quasiperiodicity, phase-locking, and the onset of chaos.Physica D 40, 196–217.

    Article  MathSciNet  MATH  Google Scholar 

  • M. Misiurewicz and K. Ziemian (1989). Rotation sets for maps of tori.J. London Math. Soc. 40, 490–506.

    MathSciNet  Google Scholar 

  • A. I. Neishtadt (1984). On the separation of motions in the systems with rapidly rotating phases.Prikl. Mat. Mekh. 48:2, 197–204.

    MathSciNet  Google Scholar 

  • S. Newhouse, J. Palis, and F. Takens (1983). Bifurcations and stability of families of diffeomorphisms.Publ. Math. IHES 57, 5–72.

    MathSciNet  MATH  Google Scholar 

  • S. E. Newhouse, D. Ruelle, and F. Takens (1978). Occurrence of strange axiomA attractors near quasiperiodic flows on Tm,m ≥ 3.Commun. Math. Phys. 64, 35–40.

    Article  MathSciNet  MATH  Google Scholar 

  • D. Ruelle and F. Takens (1971). On the nature of turbulence.Comm. Math. Phys. 20, 167–192.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Anatoly Neishtadt

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galkin, O.G. Phase-locking for dynamical systems on the torus and perturbation theory for mathieu-type problems. J Nonlinear Sci 4, 127–156 (1994). https://doi.org/10.1007/BF02430630

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02430630

Key words

Navigation