Skip to main content
Log in

Organic-inorganic nanocomposite materials prepared by the sol-gel route as new ionic conductors in quasi solid state electrolytes

  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Nanocomposite organic/inorganic materials made through sol-gel method exhibit high values of ionic conductivity when they were impregnated with the redox couple I 3 /I Two different kinds of nanocomposite materials, depending on the different interactions between silica and poly(ethylene)oxide or poly(propylene)oxide blends, were prepared by the sol-gel technique in room temperature. Gels, for both nanocomposite materials, were obtained by acetic acid catalyzed solvolysis and were regulated by formation of intermediate products, such as silicon ester and -Si-O-Si-oligomers. Time-resolved fluorescence techniques and conductivity measurements were performed in order to define the parameters which allow maximum probe mobility and minimum confinement conditions with the aim to apply these materials in quasi solid state electrolytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Sanchez, F. Ribot and B. Lebeau, J. Mater. Chem.9, 35 (1999).

    Article  CAS  Google Scholar 

  2. M.E. Brik, J.J. Titman, J.P. Bayle and P. Judeinstein, J. Polym. Sci.34, 2533 (1996).

    CAS  Google Scholar 

  3. T. Keeling-Tucker and J.D. Brennan, Chem. Mater.13, 3331 (2001).

    Article  CAS  Google Scholar 

  4. E. Stathatos, P. Lianos, U. Lavrencic Stangar, B. Orel and P. Judeinstein, Langmuir16, 8672 (2000).

    Article  CAS  Google Scholar 

  5. B.M. Novak, Adv. Mater.5, 422 (1993).

    Article  CAS  Google Scholar 

  6. C. Sanchez, F. Ribot, New J. Chem.18, 1007 (1994).

    CAS  Google Scholar 

  7. D. Segal, Chemical Synthesis of Advanced Ceramic Materials, Cambridge University Press (1989).

  8. L. Hench, J.K. West, Chem. Rev.90, 33 (1990).

    Article  CAS  Google Scholar 

  9. R.A. Caruso, M. Antonietti, M. Giersig, H.-P. Hentze, J. Jia, Chem. Mater.13, 1114 (2001).

    Article  CAS  Google Scholar 

  10. M. Ivanda, S. Music, S. Popovic, M. Gotic, Journal of Molecular Structure645, 480 (1999).

    Google Scholar 

  11. D.P. Birnie, Journal of Materials Science3, 367 (2000).

    Article  Google Scholar 

  12. E.J.A. Pope, J.D. Mackenzie, Journal of Non-Crystalline Solids87, 185 (1986).

    Article  CAS  Google Scholar 

  13. E. Stathatos, P. Lianos, U. Lavrencic-Stangar, B. Orel, Adv. Mater.14, 354 (2002).

    Article  CAS  Google Scholar 

  14. E. Stathatos, P. Lianos and Ch. Krontiras, J. Phys. Chem. B105, 3486 (2001).

    Article  CAS  Google Scholar 

  15. P. Lianos, Heter. Chem. Rev.3, 53 (1996).

    Article  CAS  Google Scholar 

  16. P. Levitz, J.M. Drake and J. Klafter, J. Chem. Phys.89, 5224 (1988).

    Article  CAS  Google Scholar 

  17. K. Nakashima, Y.S. Liu, P. Zhang, J. Duhamel, J. Feng and M.A. Winnik, Langmuir9, 2825 (1993).

    Article  CAS  Google Scholar 

  18. R. Rammal, G. Toulouse, J. Phys. Lettres44, L13 (1983).

  19. S. Alexander, R. Orbach, J. Phys. Lettres43, L625 (1982).

  20. H. Cai, G.C. Farrington, J. Electrochem. Soc.139, 744 (1992).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stathatos, E. Organic-inorganic nanocomposite materials prepared by the sol-gel route as new ionic conductors in quasi solid state electrolytes. Ionics 11, 140–145 (2005). https://doi.org/10.1007/BF02430413

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02430413

Keywords

Navigation