Skip to main content
Log in

Spatio-temporal symmetries and bifurcations via bi-orthogonal decompositions

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Summary

A tool for analyzing spatio-temporal complex physical phenomena was recently proposed by the authors, Aubry et al. [5]. This tool consists in decomposing a spatially and temporally evolving signal into orthogonal temporal modes (temporal “structures”) and orthogonal spatial modes (spatial “structures”) which are coupled. This allows the introduction of a temporal configuration space and a spatial one which are related to each other by an isomorphism. In this paper, we show how such a tool can be used to analyze space-time bifurcations, that is, qualitative changes in both space and time as a parameter varies. The Hopf bifurcation and various spatio-temporal symmetry related bifurcations, such as bifurcations to traveling waves, are studied in detail. In particular, it is shown that symmetry-breaking bifurcations can be detected by analyzing the temporal and spatial eigenspaces of the decomposition which then lose their degeneracy, namely their invariance under the symmetry. Furthermore, we show how an extension of the theory to “quasi-symmetries” permits the treatment of nondegenerate signals and leads to an exponentially decreasing law of the energy spectrum. Examples extracted from numerically obtained solutions of the Kuramoto-Sivashinsky equation, a coupled map lattice, and fully developed turbulence are given to illustrate the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Armbruster, J. Guckenheimer, P. Holmes. Heteroclinic cycles and modulated traveling waves in systems with O(2) symmetry,Physica 29D (1988) 257–282.

    MathSciNet  Google Scholar 

  2. D. Armbruster, J. Guckenheimer, P. Holmes. Kuramoto-Sivashinsky dynamics on the center-unstable manifold,SIAM J. Appl. Math. 49 (1989) 676–691.

    Article  MathSciNet  Google Scholar 

  3. N. Aubry. On the hidden beauty of the proper orthogonal decomposition,Theor. and Comp. Fluid Dyn. 2 (1991) 339–352.

    Article  MATH  Google Scholar 

  4. N. Aubry, M. P. Chauve, and R. Guyonnet. Transition to turbulence on a rotating flat disk. Levich Institute Preprint No. 9008003 (1990) submitted.

  5. N. Aubry, R. Guyonnet, and R. Lima. Spatio-temporal analysis of complex signals: theory and applications,J. Stat. Phys. 64 (3/4) (1991) 683–793.

    Article  MathSciNet  Google Scholar 

  6. N. Aubry, R. Guyonnet, and R. Lima. On the turbulence spectra.J. Stat. Phys. 67 (1/2) (1992).

  7. N. Aubry, P. Holmes, J. L. Lumley, and E. Stone. The Dynamics of Coherent Structures in the Wall Region of a Turbulent Boundary Layer.J. Fluid Mech. 192 (1988) 115–173. See also: N. Aubry and S. Sanghi. Interaction mode models of near wall turbulence. Levich Institute Preprint No. 9111021 (1991) submitted.

    Article  MathSciNet  Google Scholar 

  8. N. Aubry and W. Y. Lian. Analysis of spatio-temporal complexity in the Kuramoto-Sivashinsky equation. Levich Institute Preprint No. 9108018 (1991) submitted.

  9. N. Aubry, W. Y. Lian, and E. S. Titi. Preserving symmetries in the proper orthogonal decomposition. Levich Institute Preprint No. 9106015 (1991) submitted.

  10. D. J. Benney, Long wave in liquid films,J. Math. and Physics 45 (1966) 150–155.

    MATH  MathSciNet  Google Scholar 

  11. P. Bergé.Le chaos, théorie and expériences. Série Synthèses, Eyrolles (1988).

  12. A. Bers. Space-time evolution of plasma instabilities-absolute and convective. InHandbook of Plasma Physics, ed. M. N. Rosenbluth, R. Z. Sagdeev, Amsterdam-North Holland. (1983) 451–517.

  13. L. Bunimovich, A. Lambert and R. Lima. The emergence of coherent structures in coupled map lattices,J. Stat. Physics (1990) 61.

  14. R. L. Devaney.An introduction to chaotic dynamical systems. Menlo Park, CA: Benjamin-Cummings (1985).

    Google Scholar 

  15. C. Foias, O. Manley, L. Sirovich. Empirical and Stokes eigenfunctions and the far dissipative turbulent spectrum,Phys. Fluids A 2 (3) (1990).

  16. U. Frisch. From Global (Kolmogorov 1941) scaling to local (multifractal) scaling in fully developed turbulence. To appear in the special 1991 issue on Kolmogorov ofProc. Roy. Soc. A.

  17. M. Golubitsky and D. G. Schaeffer.Singularities and groups in bifurcation theory, Vol. 1. Applied Mathematical Sciences51, Springer-Verlag (1985).

  18. M. Golubitsky, I. Stewart, D. G. Schaeffer.Singularities and groups in bifurcation theory, Vol. 2. Applied Mathematical Sciences69, Springer-Verlag (1988).

  19. J. Guckenheimer and P. Holmes.Nonlinear oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer-Verlag (1986).

  20. R. Guyonnet and R. Lima. Statistics versus dynamics: the bi-orthogonal decomposition. InProceedings of the First South-North Int. Workshop on Fusion Theory, Algers, September (1990).

  21. P. Huerre and P. Monkewitz. Local and global instabilities in spatially developing flows,Ann. Review Fluid Mech 22 (1990) 473.

    Article  MathSciNet  Google Scholar 

  22. J. M. Hyman, B. Nicolaenko, S. Zaleski, Order and complexity in the Kuramoto-Sivashinsky model of weakly turbulent interfaces,Physica D 18 (1985) 265–292.

    MathSciNet  Google Scholar 

  23. M. Jolly, I. G. Kevrekidis, E. S. Titi. Approximate inertial manifolds for the Kuramoto-Sivashinsky equation: Analysis and computations.Physica D 44 (1990) 38–60.

    Article  MathSciNet  Google Scholar 

  24. K. Karhunen. Zur spektral theorie stochatischer prozesse,Ann. Acad. Sci. Fennicae Ser. A 1 (1944) 34.

    Google Scholar 

  25. I. G. Kevrekidis, B. Nicolaenko, J. C. Scovel. Back in the saddle again: a computer assisted study of the Kuramoto-Sivashinsky equation.SIAM J. Appl. Math. 50(3) (1990) 760–790.

    Article  MathSciNet  Google Scholar 

  26. M. Kirby and D. Armbruster. Reconstructing phase space for PDE simulations (1991) Preprint.

  27. A. N. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers.Dokl. Akad. Nauk SSSR 30 (1941) 301–305.

    MATH  Google Scholar 

  28. Y. Kuramoto. Diffusion-induced chaos in reactions systems,Suppl. Prog. Theor. Phys. 64 (1978) 346–367.

    Google Scholar 

  29. M. Loève.Probability Theory. New York: Van Nostrand (1955).

    Google Scholar 

  30. J. L. Lumley. The structure of inhomogeneous turbulent flows. InAtmospheric turbulence and radio wave propagation, ed. A. M. Yaglom and V. I. Tatarski, Moscow: Nauka (1967) 166–178.

    Google Scholar 

  31. J. L. Lumley.Stochastic Tools in Turbulence. Academic (1970).

  32. G. W. Mackey.Mathematical Foundations of Quantum Mechanics, ed. W. A. Benjamin, Inc., New York-Amsterdam (1963).

    Google Scholar 

  33. M. V. Morkovin. Recent insights into instability and transition to turbulence in open-flow systems.AIAA-88-3675 (also ICASE report No 88-44) (1988).

  34. M. A. Rubio, B. J. Gluckman, A. Dougherty and J. P. Gollub. Streams with moving contact lines: complex dynamics due to contact angle hysteresis,Physical Review A (1990) to appear.

  35. L. Sirovich. Turbulence and the dynamics of coherent structures: I, II, III,Q. Appl. Maths 5 (1987) 561–590.

    MathSciNet  Google Scholar 

  36. L. Sirovich and H. Park. Turbulent thermal convection in a finite domain: Part I. Theory,Phys. Fluids 2(9) (1990) 1659–1668.

    Article  MathSciNet  Google Scholar 

  37. G. I. Sivashinsky. Nonlinear analysis of hydrodynamic instability in laminar flames, Part I. Derivation of basic equations,Acta Astraunica 4 (1977) 1176–1206.

    Google Scholar 

  38. K. R. Srinivasan. On the fine scale intermittency of turbulence,J. Fluid Mech. 151 (1985) 81.

    Article  Google Scholar 

  39. E. Stone and P. Holmes. Random perturbations of heteroclinic cycles,SIAM J. Appl. Math. 50(3) (1990) 726–743.

    Article  MathSciNet  Google Scholar 

  40. G. S. Triantafyllou, M. S. Triantafyllou, and C. Cryssostomidis. On the formation of vortex streets behind stationary cylinders,J. Fluid Mech. 170 (1986) 461–477.

    Article  Google Scholar 

  41. S. Wiggins.Global bifurcations and chaos, Analytical Methods. Applied Math. Sciences73, Springer-Verlag (1990).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Philip Holmes

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aubry, N., Guyonnet, R. & Lima, R. Spatio-temporal symmetries and bifurcations via bi-orthogonal decompositions. J Nonlinear Sci 2, 183–215 (1992). https://doi.org/10.1007/BF02429855

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02429855

Key words

Navigation