Skip to main content
Log in

The Mid-atlantic Ridge (31°S–34°30′S): Temporal and spatial variations of accretionary processes

  • Published:
Marine Geophysical Researches Aims and scope Submit manuscript

Abstract

The ridge located between 31° S and 34°30′S is spreading at a rate of 35 mm yr−1, a transitional velocity between the very slow (≤20 mm yr−1) opening rates of the North Atlantic and Southwest Indian Oceans, and the intermediate rates (60 mm yr−1) of the northern limb of the East Pacific Rise, and the Galapagos and Juan de Fuca Ridges. A synthesis of multi-narrow beam, magnetics and gravity data document that in this area the ridge represents a dynamically evolving system. Here the ridge is partitioned into an ensemble of six distinct segments of variable lengths (12 to 100 km) by two transform faults (first-order discontinuities) and three small offset (< 30 km) discontinuities (second-order discontinuities) that behave non-rigidly creating complex and heterogeneous morphotectonic patterns that are not parallel to flow lines. The offset magnitudes of both the first and second-order discontinuities change in response to differential asymmetric spreading. In addition, along the fossil trace of second-order discontinuities, the lengths of abyssal hills located to either side of a discordant zone are observed to lengthen and shorten creating a saw-toothed pattern. Although the spreading rate remains the same along the length of the ridge studied, the morphology of the spreading segments varies from a deep median valley with characteristics analogous to the rift segments of the North Atlantic to a gently rifted axial bulge that is indistinguishable from the shape and relief of the intermediate rate spreading centers of the East Pacific Rise (i.e., 21°N). Like other carefully surveyed ridge segments at slow and fast rates of accretion, the along-axis profiles of each ridge segment are distinctly convex upwards, and exhibit along-strike changes in relief of 500m to 1500 between the shallowest portion of the segment (approximate center) and the segment ends. Such spatial variations create marked along-axis changes in the morphology and relief of each segment. A relatively low mantle Bouguer anomaly is known to be associated with the ridge segment characterized by a gently rifted axial bulge and is interpreted to indicate the presence of focused mantle upwelling (Kuo and Forsyth, 1988). Moreover, the terrain at the ends of each segment are known to be highly magnetized compared to the centers of each segment (Carbotte et al, 1990). Taken together, these data clearly establish that these profound spatial variations in ridge segment properties between adjoining segments, and along and across each segment, indicate that the upper mantle processes responsible for the formation of this contrasting architecture are not solely related to passive upwelling of the asthenosphere beneath the ridge axis. Rather, there must be differences in the thermal and mechanical structure of the crust and upper mantle between and along the ridge segments to explain these spatial variations in axial topography, crustal structure and magnetization. These results are consistent with the results of investigations from other parts of the ridge and suggest that the emplacement of magma is highly focused along segments and positioned beneath the depth minimum of a given segment. The profound differences between segments indicate that the processes governing the behavior of upwelling mantle are decoupled and the variations in the patterns of axis flanking morphology and rate of accretion indicate that processes controlling upwelling and melt production vary markedly in time as well. At this spreading rate and in this area, the accretionary processes are clearly three-dimensional. In addition, the morphology of a ridge segment is not governed so much by opening rate as by the thermal structure of the mantle which underlies the segment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atwater, T. and Mudie, J. D., 1968, Block Faulting on the Gorda Rise,Science 159, 729–731.

    Google Scholar 

  • Barone, A. and Ryan, W. B. F., 1988, Along-Axis Variations within the Plate Boundary Zone of the Southern Segment of the Endeavour Ridge,J. Geophys. Res. 93, 7856–7868.

    Google Scholar 

  • Blackman, D. K. and Forsyth, D. W., 1989, Axial Topographic Relief Associated with Ridge Transform Intersections,Earth Planet. Sci. Lett. 95, 15–129.

    Article  Google Scholar 

  • Batiza, R. and Margolis, S. M., 1986, Small Non-Overlapping Offsets of the East Pacific Rise,Nature 320, 439–441.

    Article  Google Scholar 

  • Cande, S., LaBreque, J. L., and Haxby, W. B., 1988, Plate Kinematics of the South Atlantic: Chron 34 to Present,J. Geophys. Res. 93, 13,479–13,492.

    Google Scholar 

  • Carbotte, S., Welch, S., and Macdonald, K. C., 1991, Spreading Rates, Rift Propagation, and Fracture Zone Offset Histories during the Past 5 m.y. on the Mid-Atlantic Ridge, 25°–27°30′S and 31°–34°30′S, Marine Geophys. Res.13, 51–80 (this issue).

    Google Scholar 

  • Carbotte, S. and Macdonald, K. C., 1990, The Causes of Fault Facing Directions on the Ocean Floor,Geology 18, 749–752.

    Article  Google Scholar 

  • Choukroune, P., Francheteau, J., and Hekinian, R., 1984, Tectonics of the East Pacific Rise near 12°50′N: A Submersible Study,Earth Pianet. Sci. Lett. 68, 115–127.

    Article  Google Scholar 

  • Crane, K., 1976, The Intersection of the Siqueiros Transform Fault and the East Pacific Rise,Marine Geol. 21, 25–46.

    Article  Google Scholar 

  • Crane, K., 1985, The Spacing of Rift Axis Highs: Dependence upon Diapiric Processes in the Underlying Asthenosphere?Earth Planet. Sci. Lett. 72, 405–414.

    Article  Google Scholar 

  • Crane, K., 1987, Structural Evolution of the East Pacific Rise Axis from 13°10′N To 10°35′N: Interpretations from Sea-MARC I Data, Tectonophysics136, 65–124.

    Article  Google Scholar 

  • CYAMEX Scientific Team, 1981, First Manned Submersible Dives on East Pacific Rise at 21°N (Project RITA); General Results,Marine Geophys. Res. 4, 345–379.

    Article  Google Scholar 

  • Embley, R. W., Wilson, D., Malahoff, A., and Ganse, R., 1990, Tectonics of the Blanco Fault. -NE Pacific,Marine Geophys. Res. (in press).

  • Fornari, D. J., Gallo, D. G., Edwards, M. H., Madsen, J. A., Perfit, M. R., and Shor, A. N., 1989, Structure and Topography of the Siqueiros Fracture Zone Fault System: Evidence for the Development of Intra-Transform Spreading Centers, Marine Geophys. Res.11, 263–299.

    Article  Google Scholar 

  • Forsyth, D. and Wilson, B., 1984, Three-Dimensional Temperature Structure of a Ridge-Transform-Ridge System, Earth Planet. Sci. Lett.70, 355–362.

    Article  Google Scholar 

  • Fox, P. J. and Gallo, D. G., 1984, A Tectonic Model for Ridge-Transform-Ridge Plate Boundaries: Implications for the Structure of Oceanic Lithosphere,Tectonophysics 104, 208–242.

    Article  Google Scholar 

  • Fox, P. J. and Gallo, D. G., 1986, The Geology of North Atlantic Transform Plate Boundaries and their Aseismic Extensions, in Vogt, P. R., and Tucholke, B. E. (eds.),The Geology of North America, Volume M, The Western North Atlantic Region, Geological Society of America, 157–172.

  • Fox, P. J. and Macdonald, K. C., 1986, Thoughts on Ridge Axis Discontinuities: Implications for Accretionary Processes,EOS Trans. Amer. Geophys. Union 67, 360.

    Google Scholar 

  • Francheteau, J. and Ballard, R. D., 1983, The East Pacific Rise near 21°N, 13°N and 20°S: Inferences for Along-Strike Variability of Axial Processes of the Mid-Ocean Ridge,Earth Planet. Sci. Lett. 64, 93–116.

    Article  Google Scholar 

  • Gallo, D. G., Fox, P. J., and Macdonald, K. C., 1986, A Sea Beam Investigation of the Clipperton Fracture Zone Fault: The Morphotectonic Expression of a Fast-Slipping Transform Boundary,J. Geophys. Res. 91, 3455–3467.

    Google Scholar 

  • Gallo, D. G., Fox, P. J., Madsen, J. A., Lonsdale, P., and Rea., D. K., 1990, The Morphotectonic Character of a Very Fast-Slipping Ridge-Transform-Ridge Plate Boundary: The Garrett Fracture Zone (in review).

  • Grindlay, N. R., Fox, P. J., and Macdonald, K. C., 1991, SecondOrder Ridge Axis Discontinuities in the South Atlantic: Morphology, Structure, and Evolution,Marine Geophys. Res. 13, 21–49 (this issue).

    Google Scholar 

  • Johnson, G. L. and Vogt, P. R., 1973, Mid-Atlantic Ridge from 47° to 51°N,Geol. Soc. Amer. Bull. 84, 3443–3462.

    Article  Google Scholar 

  • Kappel, E. and Ryan, W., 1986, Volcanic Episodicity and a Non-Steady State Rift Valley along the Northeast Pacific Spreading Centers: Evidence from SeaMARC I,J. Geophys. Res. 91, 13925–13940.

    Google Scholar 

  • Kastens, K. A., Ryan, W. B. F., and Fox, P. J., 1986, Structural and Volcanic Expression of a Fast-Slipping Ridge-TransformRidge Plate Boundary: SeaMARC I and Photographic Surveys at the Clipperton Fracture Zone Fault,J. Geophys. Res. 91, 3469–3488.

    Google Scholar 

  • Karson, J. A., Thompson, G., Humphris, S. E., Edmond, J. M., Bryan, W. B., Brown, J. R., Winters, A. T., Pockalny, R. A., Casey, J. F., Campbell, A. C., Klinkhammer, G., Palmer, M. R., Kinzler, R. J., and Sulanowska, M. M., 1987, Along-Axis Variations in Seafloor Spreading in the MARK Area,Nature 328, 681–685.

    Article  Google Scholar 

  • Karson, J. A. and Brown, J., 1988, Geologic Setting of the Snake Pit Hydrothermal Site: An Active Vent Field on the Mid-Atlantic Ridge,Marine Geophys. Res. 10, 91–108.

    Article  Google Scholar 

  • Kong, L. S., Detrick, R. S., Fox, P. J., Mayer, L. A., and Ryan, W. B. F., 1988, The Morphology and Tectonics of the MARK Area from Sea Beam and SeaMARC I Observations (Mid-Atlantic Ridge 23°N),Marine Geophys. Res. 10, 59–90.

    Article  Google Scholar 

  • Kuo, F.-Y. and Forsyth, D. W., 1988, Gravity Anomalies of the Ridge Transform System in the South Atlantic between 31° and 34°30′S: Upwelling Centers and Variations in Crustal Thickness,Marine Geophys. Res. 10, 205–232.

    Article  Google Scholar 

  • Langmuir, C. H., Bender, J. F., and Batiza, R., 1986, Petrologic and Tectonic Segmentation of the East Pacific Rise, 5°30′14°30′N,Nature 322, 422–429.

    Article  Google Scholar 

  • Laughton, A. S. and Searle, R. C., 1979, Tectonic Processes on Slow-Spreading Ridges, in Talwani, M.et al. (eds.),Implications of Deep Drilling Results in the Atlantic Ocean: Ocean Crust, Maurice Ewing Series, Amer. Geophys. Union 2, 15–32.

  • Lonsdale, P., 1977, Structural Geomorphology of a Fast-Spreading Rise Crest: The East Pacific Rise near 3°25′S,Mar. Geophys. Res. 3, 251–293.

    Article  Google Scholar 

  • Lonsdale, P., 1978, Near-Bottom Reconnaissance of a Fast-Slipping Transform Fault Zone at the Pacific-Nazca Plate Boundary,J. Geology 86, 451–472.

    Article  Google Scholar 

  • Lonsdale, P., 1983, Overlapping Rift Zones at the 5.5°S Offset of the East Pacific Rise,J. Geophys. Res. 88, 9393–9406.

    Google Scholar 

  • Lonsdale, P., 1985, Non-Transform Offsets of the Pacific-Cocos Plate Boundary and their Traces on the Rise Flanks,Geol. Soc. Am. Bull. 96, 313–327.

    Article  Google Scholar 

  • Lonsdale, P., 1989, The Rise Flank Trails Left by Migrating Offsets of the Equatorial East Pacific Rise Axis,J. Geophys. Res. 94, 713–743.

    Google Scholar 

  • Macdonald, K. C., 1977, Near-Bottom Magnetic Anomalies, Asymmetric Spreading, Oblique Spreading, and Tectonics of the Mid-Atlantic Ridge near 37°N,Geol. Soc. Amer. Bull. 88, 541–555.

    Article  Google Scholar 

  • Macdonald, K. C. and Luyendyk, B. P., 1977, Deep-Tow Studies of the Structure of the Mid-Atlantic Ridge Median Valley near Lat. 3°N: Preliminary Observations,Geology 3, 211–215.

    Article  Google Scholar 

  • Macdonald, K. C., Kastens, K., Spiess, F. N., and Miller, S. P., 1979, Deep-Tow Studies in the Tamayo Fracture Zone Fault,Marine Geophys. Res. 4, 37–70.

    Article  Google Scholar 

  • Macdonald, K. C., 1982, Mid-Ocean Ridges: Fine-Scale Tectonic, Volcanic and Hydrothermal Processes within the Plate Boundary Zone,Ann. Rev. Earth Planet. Sci. 21, 1441–1453.

    Google Scholar 

  • Macdonald, K. C. and Fox, P. J., 1983, Overlapping Spreading Centers: A New Kind of Accretionary Geometry on the East Pacific Rise,Nature 302, 55–58.

    Article  Google Scholar 

  • Macdonald, K. C., Sempere, J. C., and Fox, P. J., 1984, East Pacific Rise from Siqueiros to Orozco Fracture Zones: AlongStrike Continuity of the Axial Neovolcanic Zone and Structure and Evolution of Overlapping Spreading Centers,J. Geophys. Res. 89, 6044–6069.

    Google Scholar 

  • Macdonald, K. C., 1986, The Crest of the Mid-Atlantic Ridge: Models for Crustal Generation Processes and Tectonics, in Vogt, P. R. and Tucholke, B. E. (eds.),The Geology of North America, Volume M, The Western North Atlantic Region, Geological Society of America, 51–68.

  • Macdonald, K. C., Castillo, D. A., Miller, S. P., Fox, P. J., Kastens, K. A., and Bonatti, E., 1986, Deep-Tow Studies of the Vema Fracture Zone 1. Tectonics of a Major Slow-Slipping Transform Fault and its Intersection with the Mid-Atlantic Ridge,J. Geophys. Res. 91, 3334–3354.

    Google Scholar 

  • Macdonald, K. C., Fox, P. J. Perram, L. J., Eisen, M. F., Haymon, R. M., Miller, S. P., Carbotte, S. M., Cormier, M.-H., and Shot, A. N., 1986, A New View of the Mid-Ocean Ridge from the Behavior of Ridge-Axis Discontinuities,Nature 335, 217–225.

    Article  Google Scholar 

  • Needham, H. D. and Francheteau, J., 1974, Some Characteristics of the Rift Valley in the Atlantic Ocean near 36°48′N,Earth Planet. Sci. Lett. 22, 29–43.

    Article  Google Scholar 

  • Nicolas, A. and Violette, J. F., 1982, Mantle Flow beneath Oceanic Ridges: Models Derived from Ophiolites,Tectonophys. IGC Paris81, 319–339 (Special Issue).

    Article  Google Scholar 

  • Normark, W. R., 1976, Delineation of the Main Extrusive Zone of the East Pacific Rise at Lat. 21° N,Geology 4, 681–685.

    Article  Google Scholar 

  • OTTER Scientific Team, 1984, The Geology of the Oceanographer Fracture Zone: The Ridge-Transform Intersection,Marine Geophys. Res. 6, 109–141.

    Article  Google Scholar 

  • OTTER Scientific Team, 1985, The Geology of the Oceanographer Fracture Zone: The Transform Domain,Marine Geophys. Res. 7, 329–358.

    Article  Google Scholar 

  • Parmentier, E. M. and Forsyth, D. W., 1985, Three-Dimensional Flow beneath a Slow-Spreading Ridge Axis: A Dynamic Contribution to Deepening of the Median Valley toward Fracture Zones,J. Geophys. Res. 90, 678–684.

    Google Scholar 

  • Phipps Morgan, J. and Parmentier, E. M., 1984, Lithospheric Stress near a Ridge Transform Intersection,Geophys. Res. Lett. 11, 113–116.

    Google Scholar 

  • Phipps Morgan, J., Parmentier, E. M., and Lin, J., 1987, Mechanisms for the Origin of Mid-Ocean Ridge Axial Topography: Implications for the Thermal and Mechanical Structure of Accreting Plate Boundaries,J. Geophys. Res. 92, 12823–12836.

    Google Scholar 

  • Pockalny, R., Detrick, R., and Fox, P. J., 1988, The Morphology and Tectonics of the Kane Fracture Zone from Sea Beam Bathymetric Data,J. Geophys. Res. 93, 3179–3193.

    Google Scholar 

  • Purdy, G. M. and Detrick, R. S., 1986, Crustal Structure of the Mid-Atlantic Ridge at 23°N from Seismic Refraction Studies,J. Geophys. Res. 91, 3376–3762.

    Google Scholar 

  • Ramberg, I., Gray, D. F., and Reynolds, R. G. H., 1977, Tectonic Evolution of the FAMOUS Area of the Mid-Atlantic Ridge Lat. 35°50′ to 37°20′N,Geol. Soc. Amer. Bull. 88, 609–620.

    Article  Google Scholar 

  • Renard, V. and Allenou, J. P., 1979, SEABEAM, Multi-Beam Echo-Sounding in Jean Charcot: Description, Evaluation, and First Results,International Hydrographic Review of Monaco 56, 35–67.

    Google Scholar 

  • Renard, V., Schrumpf, B., Sibuet, J. C., and Carré, D., 1975, Bathymetrie détaillé d’une partie de vallée du rift et de faille transformante, près de 36°50′N dans l’océan Atlantique, Centre National pour l’Exploitation des Oceans, Paris (Map Series).

    Google Scholar 

  • Rona, P., 1976, Asymmetric Fracture Zones and Sea-Floor Spreading,Earth Planet. Sci. Lett. 30, 109–16.

    Article  Google Scholar 

  • Rona, P. and Gray, D., 1980, Structural Behavior of Fracture Zones Symmetric and Asymmetric about a Spreading Axis: Mid-Atlantic Ridge (Latitude 23°N to 27°N),Geol. Soc. Amer. Bull. 91, 485–494.

    Article  Google Scholar 

  • Schouten, H., Klitgord, K. D., and Whitehead, J. A., 1985, Segmentation of Mid-Ocean Ridges,Nature 317, 225–229.

    Article  Google Scholar 

  • Searle, R. C., 1979, Side-Scan Sonar Studies of North Atlantic Fracture Zones,J. Geol. Soc. Lond. 136, 283–293.

    Google Scholar 

  • Searle, R. C., 1983, Multiple, Closely-Spaced Transforms in Fast-Slipping Fracture Zones,Geology 11, 607–610.

    Article  Google Scholar 

  • Searle, R. C. and Laughton, A. S., 1977, Sonar Studies of the Mid-Atlantic Ridge and Kurchatov Fracture Zone,J. Geophys. Res. 82, 5313–5328.

    Article  Google Scholar 

  • Sempere, J.-C., Purdy, G. M., and Schouten, H., 1990, Segmentation of the Mid-Atlantic Ridge Between 24° N and 30°40′N,Nature 344, 427–431.

    Article  Google Scholar 

  • Severinghaus, J. P. and Macdonald, K. C., 1988, High Inside Corners at Ridge-Transform Intersections,Marine Geophys. Res. 9, 353–367.

    Article  Google Scholar 

  • Sigurdsson, H. and Sparks, S. R. J., 1978, Lateral Magma Flow within Rifted Icelandic Crust,Nature 274, 126–130.

    Article  Google Scholar 

  • Stakes, D. S., Shervais, J. W., and Hopson, C. A., 1984, The Volcanic-Tectonic Cycle of the FAMOUS and AMAR Valleys, Mid-Atlantic Ridge (36°47′N): Evidence from Basalt Glass and Phenocryst Compositional Variations for a Steady-State Magma Chamber beneath the Valley Mid-Sections, AMAR 3,J. Geophys. Res. 89, 6995–7028.

    Google Scholar 

  • Stocks, T. and Wust, G., 1935, Morphologie des Atlantischen Ozeans, Die Tiefenverhältnisse des offenen Atlantischen Ozeans, in Wissenschaftliche Ergebnissen der Deutschen Atlantischen Expedition METEOR, 1925–1927, V. III, Teil 1, Beil 1.

  • Whitehead, J., Dick, H., and Schouten, H., 1984, Mechanism for Magmatic Accretion under Spreading Centers,Nature 312, 146–148.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fox, P.J., Grindlay, N.R. & MacDonald, K.C. The Mid-atlantic Ridge (31°S–34°30′S): Temporal and spatial variations of accretionary processes. Mar Geophys Res 13, 1–20 (1991). https://doi.org/10.1007/BF02428193

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02428193

Key words

Navigation