Skip to main content
Log in

Analytical solutions for the coefficient of variation of the volume-averaged solute concentration in heterogeneous aquifers

  • Originals
  • Published:
Stochastic Hydrology and Hydraulics Aims and scope Submit manuscript

Abstract

Under the assumption that local solute dispersion is negligible, a new general formula (in the form of a convolution integral) is found for the arbitrary k-point ensemble moment of the local concentration of a solute convected in arbitrary m spatial dimensions with general sure initial conditions. From this general formula new closed-form solutions in m=2 spatial dimensions are derived for 2-point ensemble moments of the local solute concentration for the impulse (Dirac delta) and Gaussian initial conditions. When integrated over an averaging window, these solutions lead to new closed-form expressions for the first two ensemble moments of thevolume-averaged solute concentration and to the corresponding concentration coefficients of variation (CV). Also, for the impulse (Dirac delta) solute concentration initial condition, the second ensemble moment of thesolute point concentration in two spatial dimensions and the corresponding CV are demonstrated to be unbound. For impulse initial conditions the CVs for volume-averaged concentrations axe compared with each other for a tracer from the Borden aquifer experiment. The point-concentration CV is unacceptably large in the whole domain, implying that the ensemble mean concentration is inappropriate for predicting the actual concentration values. The volume-averaged concentration CV decreases significantly with an increasing averaging volume. Since local dispersion is neglected, the new solutions should be interpreted as upper limits for the yet to be derived solutions that account for local dispersion; and so should the presented CVs for Borden tracers. The new analytical solutions may be used to test the accuracy of Monte Carlo simulations or other numerical algorithms that deal with the stochastic solute transport. They may also be used to determine the size of the averaging volume needed to make a quasi-sure statement about the solute mass contained in it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ababou, R.; Gelhar, L.W.; McLaughlin, D. 1988: Three-dimensional flow in random porous media, Tech. Rep. 318, R88-08, R.M. Parsons Laboratory, MIT, Cambridge

    Google Scholar 

  • Barry, D.A.; Sposito, G. 1990: 3-Dimensional statistical moment analysis of the Stan ford Waterloo Borden tracer data, Water Resour. Res. 26(8), 1735–1747

    Article  Google Scholar 

  • Burr, D.T.; Sudicky, E.A.; Naff, R. L. 1994: Nonreactive and reactive solute transport in three-dimensional heterogeneous porous media: Mean displacement, plume, spreading, and uncertainty, Water Resour. Res. 30(3), 791–815

    Article  CAS  Google Scholar 

  • Dagan, G. 1982: Stochastic modeling of groundwater flow by unconditional and conditional probabilities, 2, The solute transport, Water Resour. Res. 18(4), 835–848

    Google Scholar 

  • Dagan, G. 1984: Solute transport in heterogeneous porous formations, J. Fluid Mech. 145, 151–177

    Article  Google Scholar 

  • Dagan, G. 1989: Flow in Transport in Porous Media, Springer-Verlag, New York

    Google Scholar 

  • Dagan, G. 1990: Transport in heterogeneous. porous formations: spatial moments, ergodicity, and effective dispersion, Water Resour. Res. 26(6), 1281–1290

    Article  CAS  Google Scholar 

  • Deng, F.W.; Cushman, J.H.; Delleur, J.W. 1993: A fast Fourier transform stochastic analysis of the contaminant transport problem, Water Resour. Res. 29(9), 3241–3247

    Article  CAS  Google Scholar 

  • Environmental Protection Agency. 1986: Superfund Public Health Evaluation Manual, Washington, D.C., EPA/540/1-86/060

  • Environmental Protection Agency. 1988: Methods used in the United States for the assessment and management of health risk due to chemicals, Washington, D.C., EPA/600/D-89/070

  • Farrell, D.A.; Woodbury, A.D.; Sudicky, E.A. 1978: The 1978 Borden tracer experiment — Analysis of the spatial moments, Vater Resour. Res. 30(11), 3213–3223

    Article  Google Scholar 

  • Freyberg, D. L. 1986: A natural gradient experiment on solute transport in a sand aquifer. 2. Spatial moments and the advection and dispersion of nonreactive tracers, Water Resour. Res. 22, 2031–2046

    CAS  Google Scholar 

  • Graham, W.; McLaughlin, D. 1991: A stochastic model of solute transport in groundwater — application to the Borden, Ontario, tracer test, Water Resour. Res. 27(6), 1345–1359

    Article  CAS  Google Scholar 

  • Graham, W.; McLaughlin, D. 1989a: Stochastic analysis of nonstationary subsurface solute transport. 1. Unconditional moments, Water Resour. Res. 25, 215–232

    CAS  Google Scholar 

  • Graham, W.; McLaughlin, D. 1989b: Stochastic analysis of nonstationary subsurface solute transport. 2. Conditional moments, Water Resour. Res. 25(11), 2331–2355

    CAS  Google Scholar 

  • Kabala, Z.J.; Sposito, G. 1991: A stochastic model of reactive solute transport with time-varying velocity in a heterogeneous aquifer, Water Resour. Res. 27(3), 341–350

    Article  CAS  Google Scholar 

  • Kabala, Z.J.; Sposito, G. 1994: Statistical moments of reactive solute concentration in a heterogeneous aquifer, Water Resour. Res. 30(3), 759–768

    Article  CAS  Google Scholar 

  • Kapoor, V.; Gelhar, L.W. 1994a: Transport in three-dimensionally heterogeneous aquifers: 1. Dynamics of concentration variance, Water Resour. Res. 30(6), 1775–1788

    Article  CAS  Google Scholar 

  • Kapoor, V.; Gelhar, L.W. 1994b: Transport in three-dimensionally heterogeneous aquifers: 2. Predictions and observations of concentration fluctuations, Water Resour. Res. 30(6), 1789–1801

    Article  CAS  Google Scholar 

  • Kumar, P.; Unny, T.E.; Ponnambalam, K. 1991: Stochastic partial differential equations in groundwater hydrology. 2. Application to Borden aquifer, Stoch. Hydrol. Hyraul., 5(3), 239–251

    Article  Google Scholar 

  • Mackay, D. M.; Freyberg, D.L.; Roberts, P.V. 1986: A natural gradient experiment on solute transport in a sand aquifer. 1. Approach and overview of plume movement, Water Resour. Res. 22(13), 2017–2029

    CAS  Google Scholar 

  • Rubin, Y. 1991: Transport in heterogeneous porous media: prediction and uncertainty, Water Resour. Res. 27(7), 1723–1738

    Article  Google Scholar 

  • Rubin, Y.; Cushey, M.A.; Bellin, A. 1994: Modeling of transport in groundwater for environmental risk assessment, Stoch. Hydrol. Hyraul., 8, 57–77

    Article  Google Scholar 

  • Smith, L.; Schwartz, F.W. 1980: Mass transport, 1. A stochastic analysis of macroscopic dispersion, Water Resour. Res. 16(2), 303–313

    Google Scholar 

  • Smith, L.; Schwartz, F.W. 1981: Mass transport, 2. Analysis of uncertainty in prediction, Water Resour. Res. 17(2), 351–369

    Google Scholar 

  • Sposito, G.; Barry, D.A. 1987: On the Dagan model of solute transport in groundwater: Foundational aspects, Water Resour. Res. 23, 1867–1875

    CAS  Google Scholar 

  • Sposito, G.; Jury, W.A.; Gupta, V.K. 1986: Fundamental problems in the stochastic convection-dispersion model of solute transport in aquifers and field soils, Water Resour. Res. 22, 77–88

    CAS  Google Scholar 

  • Sudicky, E.A. 1986: A natural gradient experiment on solute transport in a sand aquifer: Spatial variability of hydraulic conductivity and its role in the dispersion process, Water Resour. Res. 22(13), 2069–2082

    Article  CAS  Google Scholar 

  • Tang, D.H.; Schwartz, F.W.; Smith, L. 1982: Stochastic modeling of mass transport in a random velocity field, Water Resour. Res. 18, 231–244

    Google Scholar 

  • Tompson, A.F.B. 1993: Numerical simulation of chemical migration in physically and chemically heterogeneous porous media, Water Resour. Res. 29(11), 3709–3726

    Article  CAS  Google Scholar 

  • Tompson, A.F.B.; Gelhar, L.W. 1990: Numerical simulation of solute transport in 3-dimensional, randomly heterogeneous porous media, Water Resour. Res. 26(10), 2541–2562

    Article  CAS  Google Scholar 

  • Turcke, M.A.; Kueper, B.H. 1996: Geostatistical analysis of the Borden aquifer hydraulic conductivity field, J. Hydrol., 178(1–4), 223–240

    Article  Google Scholar 

  • Van Kampen, N. G. 1981: Stochastic Processes in Physics and Chemistry, North Holland, Amsterdam

    Google Scholar 

  • Vomvoris, E.G. 1986: Concentration variability in transport in heterogeneous aquifers: a stochastic analysis, dissertation, MIT, Cambridge

    Google Scholar 

  • Vomvoris, E.G.; Gelhar, L.W. 1990: Stochastic analysis of the concentration variability in a three-dimensional heterogeneous aquifer, Water Resour. Res. 26(10), 2591–2602

    Article  CAS  Google Scholar 

  • Woodbury, A.D.; Sudicky, E.A. 1992: Inversion of the Borden tracer experiment data-investigation of stochastic moment models, Water Resour. Res. 28(9), 2387–2398

    Article  CAS  Google Scholar 

  • Woodbury, A.D.; Sudicky, E.A. 1991: The geostatistical characteristics of the Borden aquifer, Water Resour. Res. 27(4), 533–546

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kabala, Z.J. Analytical solutions for the coefficient of variation of the volume-averaged solute concentration in heterogeneous aquifers. Stochastic Hydrol Hydraul 11, 331–348 (1997). https://doi.org/10.1007/BF02427923

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02427923

Keywords

Navigation