Skip to main content
Log in

Genetic regulation of CNC expression in the pharnygeal primordia ofDrosophila blastoderm embryos

  • Published:
Roux's archives of developmental biology Aims and scope Submit manuscript

Abstract

Genetic controls regulating the establishment of the pharyngeal primordia in the anterior region of the Drosophila embryo were investigated through the analysis of the expression of thecnc gene, which is continuously expressed specificially in three pharyngeal segments. The spatial regulation ofcnc gene transcription was analyzed by in situ hybridization of CNC transcript-specific probes to embryos mutant for other cephalic patterning genes. The anterior domain of CNC expression (corresponding to the labral segment primordium) was found to be activated bybicoid andtorso maternal pathways, independently of known zygotic gap genes, and sequentially constricted to its final size by repression from neighboring region-specific genes. Control of the posterior domain (corresponding to the intercalary and mandibular segment primordia) involved combinatorial regulation by zygotic gap genes: activation by thebtd gap gene and repression from theotd gap gene anteriorly and thesna gene ventrally. Surprisingly, the posterior domain was shifted relative to the segmentation plan in mutants of theems gap gene. These regulatory controls establishing the limits of CNC expression in the pharyngeal primordia suggest that one mechanism for patterning within the anterior terminal region may involve direct activation of region-specific gene(s) by maternal factors over a relatively broad domain followed by constriction of that domain by repression from adjacently activated zygotic genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberga A, Boulay J-L, Kempe E, Dennefeld C, Haenlin M (1991) Thesnail gene required for mesoderm formation inDrosophila is expressed dynamically in derivatives of all three germ layers. Development 111:983–992

    PubMed  CAS  Google Scholar 

  • Berleth T, Burri M, Thoma G, Bopp D, Richstein S, Frigerio G, Noll M, Nüsslein-Volhard C (1988) The role ofbicoid RNA in organizing the anterior pattern of theDrosophila embryo. EMBO J 7:1749–1756

    PubMed  CAS  Google Scholar 

  • Bowerman B, Eaton BA, Priess JR (1992)skn-1, a maternally expressed gene required to specify the fate of ventral blastomeres in the earlyC. elegans embryo. Cell 68:1061–1076

    Article  PubMed  CAS  Google Scholar 

  • Brönner G, Jäckle H (1991) Control and function of terminal gap gene activity in the posterior pole of theDrosophila embryo. Mech Dev 35:205–212

    Article  PubMed  Google Scholar 

  • Casanova J, Struhl G (1989) Localized surface activity oftorso, a receptor tyrosine kinase, specifies terminal body pattern inDrosophila. Genes Dev 3:2025–2038

    PubMed  CAS  Google Scholar 

  • Cohen S, Jürgens G (1990) Gap-like segmentation genes that mediateDrosophila head development. Nature 346:482–485

    Article  PubMed  CAS  Google Scholar 

  • Dalton D, Chadwick R, McGinnis W (1989) Expression and embryonic function ofempty spiracles: aDrosophila homeobox gene with two patterning functions in the anterior-posterior axis of the embryo. Genes Dev 3:2025–2038

    Google Scholar 

  • DiNardo S, O'Farrell PH (1987) Establishment and refinement of segmental pattern in theDrosophila embryo: spatial control ofengrailed expression by pair-rule genes. Genes Dev 1:1212–1224

    PubMed  CAS  Google Scholar 

  • Diederich RJ, Merrill VKL, Pultz MA, Kaufman TC (1989) Isolation, structure and expression oflabial, a homeotic gene of the Antennapedia Complex involved inDrosophila head development. Genes Dev 3:399–414

    PubMed  CAS  Google Scholar 

  • Doyle HJ, Harding K, Hoey T, Levine M (1986) Transcripts encoded by a homeobox gene are restricted to dorsal tissues ofDrosophila embryos. Nature 32:76–79

    Article  Google Scholar 

  • Doyle HJ, Kraut R, Levine M (1989) Spatial regulation of zerk-nullt: A dorsal-ventral patterning gene inDrosophila. Genes Dev 3:1515–1533

    Google Scholar 

  • Driever W, Nüsslein-Volhard C (1988) A gradient ofbicoid protein in Drosophila embryos. Cell 54:83–93

    Article  PubMed  CAS  Google Scholar 

  • Driever W, Nüsslein-Volhard C (1989) Thebicoid protein is a positive regulator ofhunchback transcription in the earlyDrosophila embryo. Nature 337:138–143

    Article  PubMed  CAS  Google Scholar 

  • Eldon E, Pirrotta V (1991) Interactions of the Drosophila gap genegiant with maternal and zygotic pattern-forming genes. Development 111:367–378

    PubMed  CAS  Google Scholar 

  • Finkelstein R, Perrimon N (1990) Theorthodenticle gene is regulated bybicoid andtorso and specifiesDrosophila head development. Nature 346:485–488

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein R, Perrimon N (1991) The molecular genetics of head development inDrosophila melanogaster. Development 112:899–912

    PubMed  CAS  Google Scholar 

  • Frei E, Schuh R, Baumgartner S, Burri M, Noll M, Jürgens G, Seifert E, Nauber U, Jäckle H (1988) Molecular characterization ofspalt, ahomeotic gene required for head and tail development in theDrosophila embryo. EMBO J 7:197–204

    PubMed  CAS  Google Scholar 

  • Jäckle H, Tautz D, Schuh R, Siefert E, Lehmann R (1986) Cross-regulatory interactions among the gap gene ofDrosophila. Nature 324:668–670

    Article  Google Scholar 

  • Jürgens G, Lehmann R, Schardin M, Nüsslein-Volhard C (1986) Segmental organization of the head in the embryo ofDrosophila melanogaster. Roux's Arch Devl Biol 195:359–377

    Article  Google Scholar 

  • Leptin M (1991)twist andsnail as positive and negative regulators duringDrosophila mesoderm development. Genes Dev 5:1568–1576

    PubMed  CAS  Google Scholar 

  • Mohler J, Eldon ED, Pirrotta V (1989) A novel spatial transcription pattern associated with segmentation gene,giant, ofDrosophila. EMBO J 8:1539–1548

    PubMed  CAS  Google Scholar 

  • Mohler J, Vani K, Leung S, Epstein A (1991) Segmentally restricted, cephalic expression of a leucine zipper gene duringDrosophila embryogenesis. Mech Dev 34:3–10

    Article  PubMed  CAS  Google Scholar 

  • Pignoni F, Baldarelli RM, Steingrimsson E, Diaz RJ, Patapoutin A, Merriam JA, Lengyel JA (1990) TheDrosophila genetailless is expressed at the embryonic termini and is a member of the sterid receptor superfamily. Cell 62:151–163

    Article  PubMed  CAS  Google Scholar 

  • Pignoni F, Steingrimsson E, Lengyel JA (1992)bicoid and the terminal system activatetailless expression in the earlyDrosophila embryo. Development 115:239–251

    PubMed  CAS  Google Scholar 

  • Regulski M, McGinnis N, Chadwick R, McGinnis W (1987) Developmental and molecular analysis ofDeformed: a homeotic gene controllingDrosophila head development. EMBO J 6:767–777

    PubMed  CAS  Google Scholar 

  • Riley PD, Carroll SB, Scott MP (1987) The expression and regulation ofsex combs reduced protein inDrosophila embryos. Genes Dev 1:716–730

    PubMed  CAS  Google Scholar 

  • Rushlow CA, Han K, Manley JC, Levine M (1989) The graded distribution of thedorsal morphogen is initiated by selective nuclear transport in theDrosophila embryo. Cell 59:1165–1177

    Article  PubMed  CAS  Google Scholar 

  • Sprenger F, Stevens LM, Nüsslein-Volhard C (1989) TheDrosophila genetorso encodes a putative receptor tyrosine kinase. Nature 338:478–483

    Article  PubMed  CAS  Google Scholar 

  • St. Johnston TD, Gelbart WM (1987)Decapemplegic transcripts are localized along the dorsal-ventral axis of theDrosophila embryo. EMBO J 6:2785–2791

    Google Scholar 

  • Steward R (1989) Relocalization of thedorsal protein from the cytoplasm to the nucleus correlated with its function. Cell 59:1179–1188

    Article  PubMed  CAS  Google Scholar 

  • Strecker TR, Kongsuwan K, Lengyel JA, Merriam JR (1986) The zygotic mutanttailless affects the anterior and posterior ectodermal regions of theDrosophila embryo. Dev Biol 11:64–76

    Article  Google Scholar 

  • Tautz D, Pfeifle C (1989) A non-radioactive in situ hybridization method for the localization of specific RNAs. Chromosoma 98:81–85

    Article  PubMed  CAS  Google Scholar 

  • Thisse B, Stoetzel C, Gorostiza TC, Perrin-Schmitt F (1988) Sequence of thetwist gene are nuclear localization of its protein in endomesodermal cells of earlyDrosophila embryos. EMBO J 7:2175–2183

    PubMed  CAS  Google Scholar 

  • Walldorf U, Gehring WJ (1992)Empty spiracles, a gap gene containing a homeobox involved inDrosophila head development. EMBO J 11:2247–2259

    PubMed  CAS  Google Scholar 

  • Weigel D, Jürgens G, Kuttner F, Seifert E, Jackle H (1989) The homeotic genefork head encodes a nuclear protein and is expressed in the terminal regions of theDrosophila embryo. Cell 57:645–658

    Article  PubMed  CAS  Google Scholar 

  • Weigel D, Jürgens G, Klinger M, Jäckle H (1990) Two gap genes mediate maternal terminal pattern information inDrosophila. Science 248:495–498

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohler, J. Genetic regulation of CNC expression in the pharnygeal primordia ofDrosophila blastoderm embryos. Roux's Arch Dev Biol 202, 214–223 (1993). https://doi.org/10.1007/BF02427882

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02427882

Key words

Navigation