Skip to main content
Log in

Rapid enzyme assays investigating the variation in the glycolytic pathway in field-caught populations ofFundulus heteroclitus

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Variation in enzyme expression may be important in evolutionary adaptation, yet is seldom studied. Furthermore, no studies have examined the expression of all enzymes in a defined metabolic pathway. Enzyme concentration is a measure of enzyme expression and was ascertained by assaying maximal activity. Presented here is an analysis of variation of maximal enzyme activity for all the enzymes in a single metabolic pathway, glycolysis, from three clinically distributed populations of the fish,Fundulus heteroclitus. Techniques for rapidly analyzing maximal enzyme activity for all the enzymes of an entire metabolic pathway from many individuals are described. The high degree of repeatability (mean coefficient of variation for replicates, 4.4%) and sensitivity (less than 3 mg of tissue is required to measure all 10 enzymes) of these assays demonstrate the utility of such an approach for analyzing variation among populations for a large numbers of enzymes. Results from these studies indicate that (1) the average coefficient of variation for all enzyme determinations within a population is 45.3% and (2) between populations, the activity of 5 of the 10 glycolytic enzymes are significantly different. This considerable variation occurs even in populations where there is little allelic variation. These data demonstrating substantial variation in enzyme expression support the idea that changes in gene regulation may be as important as, or even more important than, changes in biochemical kinetic parameters in evolutionary processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Burton, R. S., and Feldman, M. W. (1983). Physiological effects of allozyme polymorphism: Glutamate-pyruvate transaminase and response to hyperosmotic stress in the copepodTigriopus californicus.Biochem. Genet. 21239.

    Article  PubMed  CAS  Google Scholar 

  • Bush, R. M., and Paigen, K. (1993). Evolution of B-glucuronidase regulation in the genusMus.Evol. 46(1):1.

    Article  Google Scholar 

  • Cashon, R. E., Ropson, I. J., and Powers, D. A. (1981). Biochemical genetics ofFundulus heteroclitus (L.). V. Inheritance of 10 biochemical loci.J. Hered. 79359.

    Google Scholar 

  • Cavener, D. R., and Clegg, M. T. (1981). Evidence for biochemical and physiological differences between genotypes inDrosophila melanogaster.Proc. Natl. Acad. Sci. USA 784444.

    PubMed  CAS  Google Scholar 

  • Chambers, G. K. (1988). The Drosophila alcohol dehydrogenase gene-enzyme system.Adv. Genet. 2539.

    Article  CAS  Google Scholar 

  • Clark, A. G., and Keith, L. E. (1987). Rapid enzyme kinetic assays of individualDrosophila and comparisons of field-caughtD. melanogaster andD. Simulans.Biochem. Genet. 27263.

    Article  Google Scholar 

  • Cornish-Bowden, A., and Cardenas, M. L. (1990).Control of Metabolic Processes Plenum Press, New York.

    Google Scholar 

  • Crabtree, B., and Newsholme, E. A. (1972a). The activities of phosphorylase, hexokinase, phosphofructokinase, lactate dehydrogenase and the glycerol 3-phosphate dehydrogenases in muscles from vertebrates and invertebrates.Biochem. J. 12649.

    PubMed  CAS  Google Scholar 

  • Crabtree, B., and Newsholme, E. A. (1972b). The activities of lipases and carnitine palmitoyltransferase in muscles from vertebrates and invertebrates.Biochem. J. 130697.

    PubMed  CAS  Google Scholar 

  • Crabtree, B., and Newsholme, E. A. (1987). The derivation and interpretation of control coefficients.Biochem. J. 247113.

    PubMed  CAS  Google Scholar 

  • Crawford, D. L., and Powers, D. A. (1989). Molecular basis of evolutionary adaptation at the lactate dehydrogenase-B locus in the fishFundulus heteroclitus.Proc. Natl. Acad. Sci. USA 869365.

    PubMed  CAS  Google Scholar 

  • Crawford, D. L., and Powers, D. A. (1992). Evolutionary adaptation to different thermal environments via transcriptional regulation.Mol. Biol. Evol. 9806.

    PubMed  CAS  Google Scholar 

  • DiMichele, L., and Powers, D. A. (1982a). Physiological basis for swimming endurance differences between LDH-B genotypes ofFundulus heteroclitus.Science 2161014.

    PubMed  CAS  Google Scholar 

  • DiMichele L., and Powers, D. A. (1982b). LDH-B genotype specific hatching times ofFundulus heteroclitus embryos.Nature 296560.

    Article  Google Scholar 

  • DiMichele, L., and Powers, D. A. (1991). Allozyme variation, developmental rate and differential mortality in the teleost fishFundulus heteroclitus.Physiol. Zool. 64(6):1426.

    CAS  Google Scholar 

  • DiMichele, L., Paynter, K., and Powers, D. A. (1991). Lactate dehydrogenase-B allozymes directly effects development ofFundulus heteroclitus.Science 2531014.

    Google Scholar 

  • Gillespie, J. H. (1991).The Causes of Molecular Evolution Oxford University Press, New York.

    Google Scholar 

  • Granner, D., and Pilkis, S. (1990). The genes of hepatic metabolism.J. Biol. Chem. 265(18):10173.

    PubMed  CAS  Google Scholar 

  • Harris, H. (1976). The neutralist vs. selectionist controversy.Proc. Fed. Am. Soc. Exp. Biol. 252079.

    Google Scholar 

  • Harris, H., and Hopkinson, D. A. (1976).Handbook of Enzyme Electrophoresis in Human Genetics North Holland, Oxford.

    Google Scholar 

  • Hebert, P. D. N., and Beaton, M. J. (1989).A Practical Handbook of Cellulose Acetate Electrophoresis Helena Laboratories, Austin, TX.

    Google Scholar 

  • Hillibish, T. J., and Koehn, R. K. (1985). Genetic variation in nitrogen metabolism inMytilus edulis: Contributions of theLap locus. In Gibbs, P. E. (ed.),Proc. XIX Eur. Mar. Biol. Symp. Cambridge University Press, Cambridge.

    Google Scholar 

  • Hochachka, P. W., and Somero, G. N. (1984).Biochemical Adaptation Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Kacser, H., and Burns, J. A. (1973). The control of flux.Symp. Soc. Exp. Biol. 2765.

    PubMed  CAS  Google Scholar 

  • Kacser, H., and Burns, J. A. (1979). Molecular democracy: Who shares the controls.Biochem. Soc. Trans. 71149.

    PubMed  CAS  Google Scholar 

  • Kimura, M. (1983).The Neutral Theory of Molecular Evolution Cambridge University Press, New York.

    Google Scholar 

  • Koehn, R., and Immermann, F. W. (1981). Biochemical studies of aminopeptidase polymorphism inMytilus edilus. I. Dependence of enzyme activity on season, tissue and genotype.Biochem. Genet. 191115.

    Article  PubMed  CAS  Google Scholar 

  • Kruckeberg, A. L., Neuhaus, H. E., Fell, R., Gottlieb, L. D., and Stitt, M. (1989). Decreased-activity mutants of phosphoglucose isomerase in the cytosol and chloroplast ofClarkia xantiana. Impact on mass-action ratios and fluxes to sucrose and starch, and estimation of flux control coefficients and elasticity coefficients.Biochem. J. 261457.

    PubMed  CAS  Google Scholar 

  • Laurie-Ahlberg, C. C. (1985). Genetic variation affecting the expression of enzyme-coding genes in Drosophila: An evolutionary perspective.Isozyme Current Topics Biol. Med. Res. 1233.

    CAS  Google Scholar 

  • Lewontin, R. C. (1974).The Genetic Basis of Evolutionary Change Columbia University Press, New York.

    Google Scholar 

  • McDonald, J. F., and Ayala, F. J. (1978). Genetic and biochemical basis of enzyme activity variation in natural populations. I. Alcohol dehydrogenase inDrosophila melanogaster.Genetics 89371.

    PubMed  CAS  Google Scholar 

  • Misset, O., and Opperdoes, F. (1984). Simultaneous purification of hexokinase, class-I fructose-bisphosphate aldolase, triosephosphate isomerase and phosphoglycerate kinase fromTrypanosoma brucei.Eur. J. Biochem. 144475.

    Article  PubMed  CAS  Google Scholar 

  • Newsholme, E. A., and Crabtree, B. (1986). Maximum catalytic activity of some key enzymes in provision of physiologically useful information about metabolic fluxes.J. Exp. Zool. 239159.

    Article  PubMed  CAS  Google Scholar 

  • Newsholme, E. A., and Start, C. (1973).Regulation in Metabolism John Wiley & Sons, New York.

    Google Scholar 

  • Paynter, K. T., DiMichele, L., Hand, S. C., and Powers, D. A. (1991). Metabolic implications ofLdh-B genotype during early development inFundulus heteroclitus.J. Exp. Zool. 25724.

    Article  CAS  Google Scholar 

  • Pettersson, G., and Ryde-Pettersson, U. (1989). Dependence of the Calvin cycle activity on kinetic parameters for the interaction of non-equilibrium cycle enzymes with their substrates.Eur. J. Biochem. 186683.

    Article  PubMed  CAS  Google Scholar 

  • Pickard, G. L., and Emery, W. E. (1990).Descriptive Physical Oceanography Pergamon Press, Oxford.

    Google Scholar 

  • Place, A. R., and Powers, D. A. (1979). Genetic variation and relative catalytic efficiencies: LDH-B allozymes ofFundulus heteroclitus.Proc. Natl. Acad. Sci. USA 762354.

    PubMed  CAS  Google Scholar 

  • Place, A. R., and Powers, D. A. (1984a). The lactate dehydrogenase (LDH-B) allozymes ofFundulus heteroclitus (L.). I. Purification and characterization.J. Biol. Chem. 2591299.

    PubMed  CAS  Google Scholar 

  • Place, A. R., and Powers, D. A. (1984b). The LDH-B allozymes ofFundulus heteroclitus. II. Kinetic analyses.J. Biol. Chem. 2591309.

    PubMed  CAS  Google Scholar 

  • Powers, D. A., and Place, A. R. (1978). Biochemical genetics ofFundulus heteroclitus (L.). II. Temporal and spatial variation ofLdh-B, Mdh-A, Gpi-B andPgm-A.Biochem. Genet. 16593.

    Article  PubMed  CAS  Google Scholar 

  • Powers, D. A., Smith, M., Gonzalex-Villasenor, I., DiMichele, L., Crawford, D., Bernardi, G., and Lauerman, T. (1993). A multidisciplinary approach to the selectionist/neutralist controversy using the model teleostFundulus heteroclitus. In Futuyma, D. and Antonovics, J. (eds),Oxford Surveys in Evolutionary Biology Oxford University Press, New York.

    Google Scholar 

  • Richardson, B., Baverstock, P., and Adams, M. (1986).A Practical Handbook of Cellulose Acetate Electrophoresis Academic Press, New York.

    Google Scholar 

  • Ropson, I. J., Brown, D. C., and Powers, D. A. (1990). Biochemical genetics ofFundulus heteroclitus (L.). VI. Geographical variation in the gene frequencies of 15 loci.Evolution 44(1):16.

    Article  Google Scholar 

  • Sidell, B. D., Driedzic, W. R., Johnston, I. A., and Stowe, D. B. (1987). Biochemical correlations of power development and metabolic fuel preferenda in fish hearts.Physiol. Zool. 60221.

    Google Scholar 

  • Silva, P. J., Koehn, R. K., Diehl, W. J., 3rd, Ertl, R. P., Winshell, E. B., and Santos, M. (1989). The effect of glucose-6-phosphate isomerase genotype onin vitro specific activity andin vivo flux inMytilus edulis.Biochem. Genet. 27451.

    Article  PubMed  CAS  Google Scholar 

  • Sokal, R. R., and Rohlf, F. J. (1981).Biometry W. H. Freeman, New York.

    Google Scholar 

  • Somero, G. N., and Hand, S. C. (1990). Protein assembly and metabolic regulation: Physiological and evolutionary perspectives.Physiol. Zool. 63443.

    CAS  Google Scholar 

  • Storey, K. B. (1988). Suspended animation: The molecular basis of metabolic depression.Can. J. Zool. 53920.

    Google Scholar 

  • Van Beneden, R. J., and Powers, D. A. (1989). Structural and functional differentiation of two clinally distributed glucosephosphate isomerase allelic isozymes from the teleostFundulus heteroclitus.Mol. Biol. Evol. 6(2):155.

    PubMed  Google Scholar 

  • Watt, W. B. (1985). Bioenergetics and evolutionary genetics: Opportunities for new synthesis.Am. Nat. 125(1):118.

    Article  CAS  Google Scholar 

  • Watt, W. B., Carter, P. A., and Donohue, K. (1986). Females' choice of “good genotypes” as mates is prompted by an insect mating system.Science 2331187.

    PubMed  CAS  Google Scholar 

  • White, M. F., and Fothergill-Gilmore, L. A. (1992). Development of a mutagenesis, expression and purification system from yeast phosphoglycerate mutase. Investigation of the role of active site His 181.Eur. J. Biochem. 207709.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, A. C. (1976). Gene regulation in evolution. In Ayala, F. J. (ed.),Molecular Evolution Sinauer Assoc., Sunderland, MA, pp. 225–234.

    Google Scholar 

  • Zamer, W. E., and Hoffmann, R. J. (1989). Allozymes of glucose-6-phosphate isomerase differentially modulate pentose-shunt metabolism in the sea anemoneMetridium senile.Proc. Natl. Acad. Sci. USA 862737.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pierce, V.A., Crawford, D.L. Rapid enzyme assays investigating the variation in the glycolytic pathway in field-caught populations ofFundulus heteroclitus . Biochem Genet 32, 315–330 (1994). https://doi.org/10.1007/BF02426894

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02426894

Key words

Navigation